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1. SUMMARY OF RESEARCH

During the period January 1, 1988 to December 31, 1990, research carried out by the Nano-
structures Group in the Department of Electrical Engineering at Notre Dame was concerned with a
variety of quantum transport and optical phenomena in mesoscopic structures. This research was
funded by the Air Force Office of Scientific Research under Grant No. AFOSR-88-0096. The
major issues examined included analysis of the scope and performance of velocity modulation
transistors for ultrafast switching applications, novel methods of fabricating quantum wires that
can provide extremely high electron mobility and high optical absorption, the Aharonov-Bohm
effect along with its basic physics and possible applications in quantum interference transistors
with ultra-low power-delay product, a variety of interference phenomena - both optical and
electronic, study of quantum transport in ballistic constrictions and bends with special attention
given to space charge effects and bend resistance, quantum transport in heavily doped structures
with strong elastic scattering as well as magnetotransport theory, accurate treatment of real space
transfer in quantum wells, a critical examination of the scope of quantum devices as both analog
and digital elements either as a discrete device or in integrated circuits, and finally interesting
properties of and phenomena in periodic structures.

The research supported by this grant resulted in twenty one journal papers, ten articles in
books, and thirty four conference presentations. The research contributed to the granting of
five M.S. degrees and have supported two continuing M.S. research and three continuing Ph.D.
research.

Individuals who participated in the grant are Profs. S. Bandyopadhyay, C. S. Lent, W. Porod
and graduate students S. Bhobe, M. Leng, L. Liang, S. Sivaprakasam, H. Harbury, S. Chaudhuri,
V. Deshpande, and S. Subramaniam.
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1 2. RESEARCH DESCRIPTION

I
2.1 Velocity Modulation TransistorsI

Velocity Modulation Transistors (VMT) were originally proposed as field effect switching
transistors in which the channel conductance is modulated by modulating the mobility rather
than the concentration of the carriers in the channel by an applied gate voltage. The advantage
is of this is that since the device is not switched by physically moving carriers out of the channel,
the switching speed is not limited by the transit time of electrons; instead, it is limited by the
momentum relaxation time which is typically much shortr than the transit time. This leads to
an ultrafast electronic switch.

We investigated this device in a normally-off (enhancement mode) configuration. Enhancement-
mode operation is important to prevent standby power dissipation in circuits. The relevant struc-
ture consists of a quantum well one half of which is intentionally doped while the other half is
left undoped. In the absence of any external electric field, electrons mostly reside in the doped
half due to the electrostatic attraction it feels from the dopants (ionized donors). In this region,
the electron mobility is low due to strong impurity scattering, so that when the electrons are
mostly in the doped region, the overall mobility of electrons in the well (channel) is low. As a
result, the channel conductance is low and the device is off. Now if an electric field is applied
perpendicular to the well-barrier interface, it skews the electron wavefunction to the undoped
half in which the mobility is much higher because of the absence of in-situ impurity scatterir".
Consequently the channel mobility and conductance goes up dramatically. This switches t'
device on.

We investigated this switching mechanism using a combination of quantum-mechanical and
semiclassical analysis. Our quantum-mechanical analysis was fully self-consistent in the sense
that we solved the Schr~dinger and Poisson Equations to find the potential and wavefunction
in the well both in the presence and absence of the electric field. From the wavefunction, the
impurity scattering rates were calculated using Fermi's Golden Rule and used in a Monte Carlo
simulation to evaluate the momentum relaxation times and hence the mobility. Our analysis
revealed that wells with high carrier concentrations are unsuitable for this device since screening
increases the momentum relaxation times dramatically and reduces the switching speed. How-
ever, regardless of the carrier concentration, the field (voltage) required to change the conductance
by 90 % at a temperature of 4.2 K was very small (- hundreds of millivolts).

Therefore, we found that this device can have extremely large transconductance at liquid
helium temperatures resulting in small RC time constants for switching and large unity gain
frequency.

We also investigated the performance of the device when instead of doping one-half of
the well uniformly, it is delta-doped with a series of planar doped sheets. Delta doping has
been shown to result in improved performance for MESFETs by several groups, but primarily
because of increased carrier concentration. We found that delta doping in a VMT does improve
the switching speed by increasing the momentum relaxation rate dramatically. The physics
underlying this effect is extremely interesting. If the scattering from the various delta doped layers
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are correlated, that is the scattering amplitudes add in phase, then the strength of the scattering
interaction is increased many-fold. On the other hand, if the scatterings are uncorrelated, then
scattering is not enhanced significantly. We expect strong correlations between the delta-doped
layers at low temperatures so that delta-doping may indeed result in better device performance.
Sunh realizations are extremely useful for the design of VMTs.

Relevant Publications:

" Modulated Interface Roughness Scattering in Quantum Wells and its Device Applications,
Suyog Bhobe, Wolfgang Porod and Supriyo Bandyopadhyay, Surface and Interface Anal-
ysis, 14, 590 (1989).

" Modulation of Impurity Scattering Rates by Wavefunction Engineering and Its Device
Applications, Suyog Bhobe, Wolfgang Porod and Supriyo Bandyopadhyay, Solid State
Electronics, 32, 1651 (1989)

" Tailoring Transport Properties By Wavefunction Engineering in Quantum Wells and its
Device Applications, Suyog Bhobe, Wolfgang Porod and Supriyo Bandyopadhyay, Nanos-
tructure Physics and Fabrication, eds. M. A. Reed and W. P. Kirk, (Academic Press,
Boston, 1989), p. 201.

2.2: Quantum Wires and Their Importance

Quantum wire structures are expected to provide extremely high electron mobility at low
enough temperatures due to the drastic suppression of elastic scatterings that dominate at cryo-
genic temperatures. Additionally, they show strong optical non-linearities and high optical
absorption due to extremely large density of states. Moreover, quantum wire structures have
recently found a large number of applications in "waveguide electronics" (or mesoscopic phe-
nomena) where electron transport is analogous to microwave propagation in a waveguide. It has
also been claimed by us that the performance of certain quantum devices improve dramatically
if they are realized from quantum wires rather than quantum wells.

The obvious method for realizing quantum wells is by etching mesas or V-grooves into
quantum wells. This is a challengiiig process since precise control of etching is required so
as not to deplete the wires of mobile carriers due to Fermi level pinning. We have proposed
an alternate technique where quantum confinement into one-dimensionality is achieved through
space-charge effect rather than using quantum wells. The main feature of our design is that the
confinement of electrons in the quasi 1-d wire is exclusively produced by the internal electric
fields resulting from the conduction band discontinuities at crossing heterointerfaces. The idea is
to use 1-d confinement created at the intersection of two 2-d structures. The quasi 1-d quantum
wire can, in principle, be fabricated by crossing two accumulation layers formed along separate
heterointerfaces, thereby realizing an 'accumulation wire.' Electron confinement is thus solely
provided by the inherent electric fields associated with heterointerfaces, without the need for
confinement in artificial quantum wells. This feature distinguishes our design of a quantum wire
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from earlier proposals where confinement in a quantum well was necessary. Our design of the
quantum wire compares to previous designs in the same manner in which a quasi 2-d system in
an accumulation layer compares to a quasi 2-d system in a quantum well.

In particular, we investigate accumulation wires which are produced at the intersection of
two perpendicular heterointerfaces. We study the electronic states at the intersection by solving
Schr6dinger's and Poisson's equations self-consistently, taking into account the potential discon-
tinuities at the interfaces. An isolated quantum wire will only be produced if the Fermi energy
is such that the electrons accumulate only at the crossing point, but not at the heterointerfaces
themselves. We study under which doping conditions and for which material combinations such
an isolated accumulation wire can be achieved.

Relevant Publications:

" A Proposed Quantum Wire Structure: An 'Accumulation Wire' at Crossing Heterointer-
faces, Henry K. Harbury and Wolfgang Porod, J. Vac. Sci. Technol. B 8, 923 (1990).

" Numerical Study of Electronic States in a Quantum Wire at Crossing Heterointerfaces,
Computational Electronics, Semiconductor Transport and Device Simulation, ed. by
K. Hess, J. P. Leburton, and U. Ravaioli (Kluwer Academic Publishers, 1990), p. 243.

2.3: The Aharonov-Bohm Effect

2.3.1: Aharonov-Bohm Interferometers
The Aharonov-Bohm effect has long been proposed as a quantum interference effect for re-

alizing novel electronic devices with very low power-delay product, multifunctioniality and low
threshold voltage. The low threshold voltage is especially attractive since that makes it possible
to switch these devices optically rather than electronically resulting in ultrafast opto-electronic
switches whose switching speed is not limited by any RC time constant.1 The major drawback
of these devices however is that switching is accomplished through quantum-mechanical inter-
ference which requires tight control over an electron's phase throughout the structure. In the
case of ballistic transport, when no elastic or inelastic scattering takes place, there are two ef-
fects that introduce an uncertainty in the phase and thereby dilutes the interference effect - (a).
thermal spread in the longitudinal (along the direction of current flow) momenta of electrons
which increases with increasing temperature, and (b). spread in the transverse momenta in poly-
dimensional structures. In one-dimensional interferometers, the latter cause can be eliminated
so that these structures can operate at higher temperatures. The advantage of one-dimensional
structures is even more pronounced when transport in diffusive rather than ballistic. In that
case, one dimensional confinement can drastically reduce elastic scattering which helps to retain
control over the electron's transit time which determines the electrostatic Aharonov-Bohm phase
shift.

'Optical switching using virtual charge polarization induced by sub-bandgap optical excitation results in
ultrafst switching since the switching time is neither limited by transit time, nor by RC time constant, nor
by radiative recombination lifetimes.

5

I



Based on the above realizations, we have designed new electrostatic Aharonov-Bohm in-
terferometers that could operate at 77 K which is far above the temperature of operation of
conventional interferometers (typically less than 4.2 K). These structures, albeit difficult to fab-
ricate, are realizable with present day technology. They utilize double quantum wires fabricated
by etching a very narrow V-groove (presumably by focussed ion beam etching) in a quantum
well. Our analysis reveals that these structures can provide - 90 % modulation of the conduc-
tance at 77 K. We later extended our analysis to examine the performance of both 2-d and l-d
interferometers in the diffusive regime. This resulted in the determination of temperature-carrier
concentration maps for obtaining various levels of performance for both 1-d and 2-d interfer-
ometers. Such results are extremely useful to device engineers in designing Aharonov-Bohm
devices.

2.3.2: Twin Minima in Electrostatic Aharonov-Bohm Conductance Oscillations
Our research with the electrostatic Ah:,ronov-Bohm effect also revealed a novel fundamental

feature associated with this effect in 1-d rings that was hitherto unsuspected. We predicted
the existence of two different types of conductance minima in the conductance oscillations
arising from different interference conditions. This doubles the frequency of oscillations making
it twice that predicted by the Aharonov-Bohm effect. This novel feature, which gives rise to
secondary minima, is not inhibited strongly by elastic scattering but is less robust than the primary
Aharonov-Bohm effect so that it can be observed only at low temperatures. The opposite voltage
dependences of the primary and secondary minima helps to distinguish between the two types
and may serve as a fundamental test for the observation of the electrostatic Aharonov-Bohm
effect.

2.3.3: Mode Quenching
We also found that interface roughness scattering can cause a peculiar mode quenching

effect in quasi one dimensional Aharonov-Bohm interferometers whereby a propagating mode
can suddenly become evanescent in a region containing an island disorder. This effect leaves its
fingerprints on the oscillation characteristics in the form of well resolved kinks.

Relevant Publications:

* Double Quantum Wire Aharonov-Bohm Interferometers for Possible LN 2 Temperature
Operation, S. Bandyopadhyay and W. Porod, Superlattices and Microstructures, 5, 239
(1989).

@ Performance of Electrostatic Aharonov-Bohm Interferometers in the Diffusive Regime,
Appl. Phys. Lett., 53, 2323 (1989).

e Doubled Frequency of the Conductance Minima in Electrostatic Aharonov-Bohm Oscilla-
tions in One-dimensional Rings, M. Cahay, S. Bandyopadhyay and H. L. Grubin, Nanos-
tructure Physics and Fabrication, eds. M. A. Reed and W. P. Kirk, (Academic Press,
Boston, 1989), p. 407.

e Two Types of Conductance Minima in Electrostatic Aharonov-Bohm Conductance Os-
cillations, M. Cahay, S. Bandyopadhyay and H. L. Grubin, Phys. Rev. B., 39, 12989
(1989).
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2.4: Coherence and Interference Phenomena in Mesoscopic Nanostructures

2.4.1: Optical Fluctuations due to Coherence
Fluctuation effects in the conductance of nanostructures arising from quantum interference

of electrons have been studied widely in the context of universal conductance fluctuations.
Recently, we predicted a novel quantum interference phenomenon that gives rise to fluctuations
in the optical spectra of disordered nanostructures when the inelastic scattering time in the
structures exceeds the radiative recombination lifetime. This is the first prediction of quantum
fluctuation effects in the optical (rather than transport) properties of nanostructures. This effect
arises as follows. If the dominant process for the relaxation of the optical dipole moment in
the structure is elastic scattering which preserves phase relationships between the electron and
hole states, then the optical spectrum of the structure will depend on these phase relationships
and change if these phase relationships are altered by an external electric or magnetic field. In
other words, the spectrum will fluctuate randomly but reproducibly in an external field. These
fluctuations will be sample-specific since the phase-relationships in the absence of any field
depends on the exact "configuration" of the elastic scatterers within the sample. Consequently,
the fluctuation pattern will be a fingerprint of the exact locations of the defects (elastic scattering
centers) within a sample. Since the spectrum depends on the configuration of the defects (elastic
scattering centers) within a sample, it will have a unique consequence on the inhomogeneous
broadening of lineshapes in multi quantum well structures or superlattices. In a lateral surface
superlattice, each quantum dot will have a slightly different optical spectrum if the dots merely
have different impurity configurations but are otherwise identical. This phenomenon therefore
sets a fundamental lower limit to the inhomogeneous broadening in a superlattice structure.

Because of the essential similarity between the physics of this effect and that of "universal
conductance fluctuations", we consider this effect to be an optical analog of the conductance
fluctuations.

This effect will have fundamental implications for optical switching devices in integrated
arrays.

2.4.2: Quantum Interference Effects in Transient Transport.
We also extended the formalism that we used to study the optical fluctuation effect to the study

of transient transport effects in semiconductor nanostructures. We found that if the momentum
relaxation time in a structure is shorter than the transit time which in turn is shorter than the
inelastic scattering time (i.e. the momentum relaxes entirely due to elastic scattering), then
the mobility in a disordered structure (calculated quantum-mechanically) depends not only the
degree of disorder, but also on the precise configuration of the disorder (i.e. the locations
of the scattering centers). We compared the results of the quantum-mechanical calculation of
mobility with results obtained from the Fermi's Golden Rule formalism which does not account
for interference between the scatterers. It was found that the quantum-mechanical result depends
on the configuration unlike the Fermi's Golden Rule result and also the quantum mechanical
result is always smaller in magnitude probably because of the coherent back-scattering effect
that gives rise to Anderson localization.

* 7



Relevant Publications:

" Fluctuations in the Optical Spectra of Disordered Microstructures Due to Quantum Inter-
ference Effects, S. Bandyopadhyay, Phys. Rev. B., 38, 7466 (1988).

" Quantum Interference Effects in Transient Electronic Transport, D. R. Poole and S. Bandy-
opadhyay, J. Appl. Phys., 66 5422 (1989).

" Quantum Phase Coherent Effects in the Photoluminescence Spectra of Disoredered Meso-
scopic Structures, Supriyo Bandyopadhyay, Nanostructure Physics and Fabrication, eds.
M. A. Reed and W. P. Kirk, (Academic Press, Boston, 1989), p. 201.

2.5: Quantum Effects in Real-Space Transfer

2.5.1: Phonon Assisted Transitions From Bound to Unbound States
It is well known that quantum wells, in addition to confined bound states, produce resonant

continuum states. These resonant states are a consequence of the reflections, and the consecu-
tive interference, of the electronic wavefunctions at the edges of the quantum well. While the
existence of these so-called virtual resonant states has been recognized, their influence on elec-
tronic transport has received little attention. We investigated the influence of these continuum
resonances on the transfer of electrons in and out of quantum wells.

We find that the matrix elements which determine scattering rates exhibit structure at the
resonant energies. This leads to suppression of scattering by polar optical phonons relative to
non-polar optical and acoustic phonon scattering. The suppression by the effective matrix element
of small q. scattering can be understood from a simple qualitative argument. Resonant continuum
states correspond to states which are orthogonal to bound states inside the well. This condition
of orthogonality implies that for q, = 0, the matrix element connecting bound states with
resonant states vanishes. Thus the total scattering rate is dominated by the contribution of those
phonons with larger momentum components normal to the interface. Polar optical scattering is
predominantly small q, forward scattering. We conclude, therefore that the polar optical scattering
rate will be suppressed relative to processes not so strongly weighted toward forward scattering.
This implies that it is non-polar optical and acoustic phonons that are primarily responsible for
carriers scattering out of the well and also their capture.

2.5.2: Anisotropy in Real Space Transfer
We have also studied the dependence of the real-space transfer rates upon the shape of the

confining quantum well. We discovered a rather surprising asymmetry in the escape rates from
wells with non-symmetrical potential profiles. Consider, for example, a well has one abrupt edge
(confining wall) and one edge which is smoothly graded. Electrons transferred out of the well
by polar optical phonon scattering will preferentially scatter in the direction of the more abrupt
interface. We explored this asymmetry in several potential profiles. The effect has its origin
in the overlap between the initial-state wavefunction and the final scattered-state wavefunction.
This phenomenon may prove very useful in the design of real-space transfer devices.

I 8



Relevant Publications:

" Escape from Quantum Wells by Polar Optical Phonon Scattering, Craig S. Lent, Lie Liang
and Wolfgang Porod, Appl. Phys. Lett. 54, 2315 (1989).

* Real Space Transfer Rates for Polar Optical Phonon Scattering from Asymmetric Quantum
Wells, Craig S. Lent and Lie Liang, Solid State Electronics 32, 1479 (1989).

" Escape from Quantum Wells via Polar Optical Phonon Scattering, Lie Liang and Craig S.
Lent, J. Appl. Phys. 68 1741 (1990).

2.6: The Quantum Transmitting Boundary Method (QTBM)

A long-standing difficulty in computing the solutions to the Schrodinger equa!n for current-
carrying states is the difficulty of expressing the boundary conditions for the wavefunction without
prior knowledge of the transmission and reflection coefficients. We developed a technique for
handling these transmitting boundaries which enables us to solve directly for the wavefunction
of the current-carrying states in two dimensions. This is a very important tool in investigating
ballistic quantum transport. It allows us to efficiently find both the transmission coefficients
necessary for calculating the total current, and the charge density inside the device region,
necessary for including self-consistent effects. Because the complete wavefunction is calculated,
any quantum mechanical observable can be computed. An early benefit of this capability was
the identification of vortices in the current inside a cavity (see discussion in Section 2.5.5).

Relevant Publications:

* Numerical Simulation of Single-Electron Transmission Through Two Dimensional Quan-
tum Device by the Finite Element Method, D.J. Kirkner, Craig S. Lent, and Srinivas
Sivaprakasam, International Journal for Numerical Methods in Engineering 29, 1527
(1990).

* The Quantum Transmitting Boundary Method, Craig S. Lent and D.J. Kirkner, J. Appl.
Phys. 67, 6353 (1990).

2.7: Electron Transport in Coherent Ballistic Channels

2.7.1: Nonlinear Conductance of Ballistic Constrictions

Much attention has focussed on interpreting the first experiments which showed that conduc-
tance through a very small ballistic channel is quantized. This has been confirmed experimentally
and the theory is now well understood. The quantization hold only for the linear response regime,
however, when the voltage drop from one end of the channel to the other is very small. We have
employed the QTBM to calculate the I-V curve for a constriction in a quantum channel when
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the voltage drop is not small - the non-linear response. We chose a simple linear model for the
potential drop down the length of the constriction. The contributions from all the occupied states
were calculated at non-zero temperature. Our results showed a saturation in the current through
the constriction. The saturation current varied nearly linearly with the width of the constriction.
We see a smooth transition to quantized conduction at the constriction vanishes and we recover
the straight-channel results. Since the constriction width can be controlled electrostatically, this
response is very analogous to that of a conventional JFET.

2.7.2: Space-Charge Effects in Ballistic Constrictions

The importance of a built-in potential caused by space charge effect in narrow ballistic
constrictions was investigated using a scattering matrix method coupled with a boundary element
technique. It was found that in the linear response regime, the built in potential does not
cause qualitative changes in the transport characteristics although it certainly causes quantitative
changes.

2.7.3: Transmission Through a Bend in an Electron Waveguide

If ultimately quantum waveguide devices are to be interconnected, it is important to establish
whether bends in waveguides present significant sources of reflection and mode-mixing. We
again employed the QTBM to calculate the transmission through a circular, right-angle bend
in an electron waveguide. We examined an idealized case of infinitely hard walls, and a more
realistic model with softer parabolic walls. The latter allow some leakage around the bend by
tunneling. Our calculation established the the problem of reflection by such a bend can easily
be minimized with modest design considerations. We found that mode-mixing is significant and
may require single-moded operation of waveguide devices.

2.7.4: Electron Waveguide Cavities

The wave nature of electrons in a ballistic channel implies that localized regions of the channel
which are wider can behave like resonant cavities in microwave theory. One therefore expects
transmission resonances at energies which depend on the cavity geometry. We have explored
geometrical effects in transmission through symmetric cavities. Our numerical approach, using
the QTBM, includes automatically the effects of all evanescent channel modes. Further, we were
able to study cavities with soft walls rather than restricting ourselves to the idealized hard-wall
case. Several device designs have been proposed which exploit the dramatic sensitivity of the
transmission to the cavity geometry. Small changes can be made (electrostatically) to the cavity
dimensions, which result in large changes in the transmitted current. Because all of the theory
of such devices relies on models with infinitely hard cavity walls, it is important to ascertain
whether the rapid variation of the transmission is an artifact of this feature of the model, or
is more robust. We calculated the transmission coefficient through cavities with soft potential
walls and found qualitatively similar abruptness in turn-on and turn-off of the transmission, thus
verifying the robust character of the effect.

2.7.5: Current Vortex Formation

We examined the flow of current in a ballistic waveguide cavity. This is directly accessible
because the QTBM yields the full wavefunction everywhere. Evaluating the current density in
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the cavity region, we found the very surprising result that the current formed vortices. The
center of the vortex is a point where the complex phase of the wavefunction is singular and the
probability density vanishes. At a given energy, many vortices may be formed. If the cavity
is symmetric, the vorticity occurs in vortex-antivortex pairs so the wavefunction as a whole
has no net angular momentum. If the cavity is asymmetric, however, vortices of one sign may
dominate, yielding a net angular momentum. This is possible only because the time-reversal
symmetry of the Hamiltonian is broken by the boundary conditions at the current-carrying leads.
(Note that no magnetic field is imposed here.)

We studied a circular resonant cavity which is connected by a tunnel barrier to one side of
a straight waveguide channel. This structure was designed to maximize vorticity of one sign.
We found that, indeed, a single very strong current vortex is present at nearly all energies.
Resonances associated with the bound states of the circular cavity produce huge increases in
the charge stored in the cavity. Such resonant structures may be useful as quantum capacitors.
Additionally, the ability to couple directly states with non-zero angular momentum to current
carrying states may yield novel opto-electronic coupling.

Relevant Publications:

" A Two-dimensional Hot Carrier Injector for Electron Waveguide Structures, Craig S. Lent,
Srinivas Sivaprakasam and D.J. Kirkner, Solid State Electronics 32, 1137 (1989).

* Calculation of Ballistic Transport in Two-dimensional Quantum Structures using the Finite
Element Method, Craig S. Lent, S. Sivaprakasam and D.J. Kirkner, in Nanostructure
Physics and Fabrication, 279, edited by M. A. Reed and W. P. Kirk, (Academic Press,
Boston, 1989).

" Scattering Matrix Analysis of Electron Transport in Disordered Aharonov-Bohm Interfer-
ometers and Ballistic Constrictions, M. Cahay, S. Bandyopadhyay and H. R. Frohne, J.
Vac. Sci. Technol., 8, 1399 (1990).

" Transmission Through a Bend in a Quantum Waveguide, Craig S. Lent, Appl. Phys. Lett.
56, 2554 (1990).

" Quantum Electron Waveguides: Bends, Constrictions, and Cavities, Craig S. Lent and S.
Sivaprakasam, in Nanostructures and Microstructure Correlation with Physical Proper-
ties of Semiconductors, SPIE Proceedings Vol. 1284, 31, edited by H.G. Craighead and
J.M. Gibson, (SPIE, Bellingham, Washington, 1990).

" Calculation of Transport Through Ballistic Quantum Structures, Craig S. Lent, in Com-
putational Electronics, edited by K. Hess, J.P. Leburton, and U. Ravaioli, 259, (Kluwer,
Boston, 1990).

" Ballistic Current Vortex Excitations in Electron Waveguide Structures, Craig S. Lent, Appl.
Phys. Lett. 57, 1678 (1990).
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2.8: Diffusive Quantum Transport

We developed a scattering matrix method to study diffusive quantum transport in collabo-
ration with Prof. Marc Cahay of the Department of Electrical and Computer Engineering in
the University of Cincinnati. The method is ideally suited to study quantum transport in rel-
atively large and heavily doped structures where other methods such as the recursive Green's
function formalism will be computationally inefficient. The scattering matrix method has been
successfully applied to reproduce the results of Anderson localization and universal conductance
fluctuations in disordered structures. In particular, we have used this method to study the role of
evanescent states in quantum transport. Many surprising results were found including the fact
that evanescent states have a strong influence on the localization length and on the probability
distribution of conductances and their higher order cumulants.

Relevant Publications:

" Influence of Evanescent States on Quantum Transport Through an Array of Elastic Scat-
terers, M. Cahay, S. Bandyopadhyay, M. A. Osman, and H. L. Grubin, Surface Science
228, 301 (1990).

" The Generalized Scattering Matrix Approach: An Efficient Technique for Modeling Quan-
tum Transport in Relatively Large and Heavily Doped Structures, S. Bandyopadhyay and
M. Cahay, Computational Electronics, (Kluwer Academic Press, Norwell, 1990), p. 223

" Numerical Study of the Higher Order Moments in Conductance Fluctuations in Meso-
scopic Structures, P. Marzolf, M. Cahay and S. Bandyopadhyay, Computational Electron-
ics, (Kluwer Academic Press, Norwell, 1990), p. 263.

2.9: Magnetic Edge States

In an applied magnetic field, the electronic states in a confined structure break into two classes:
states localized by the magnetic field (Landau levels), and circulating states which traverse the
edges of the structure (edge states). We studied the formation of these states in a quantum
dot structure as the magnetic field increases. Since the high-field limit produces degenerate
Landau levels, this process is sometimes know as Landau condensation. States initially split by
the presence of the confining potential, become degenerate as they are localized in the interior
of the dot. The edge states corresponding to orbits which skip around the periphery yield a
paramagnetic correction to the free electron diamagnetism. Semiclassical orbit are frequently
invoked to explain edge-state behavior. We compared current densities calculated from the
wavefunction to the semiclassical orbits. We found that a naive picture predicted even the
direction of circulation incorrectly. We formulated a connection between the semiclassical orbits
and the quantum results. The effects of softer confining potentials was also examined.

12



Relevant Publication:

* Edge States in a Circular Quantum Dot, Craig S. Lent Phys. Rev. B 43, 4179 (1991).

2.10: Analysis of Quantum Devices - Merits and Drawbacks

In collaboration with Prof. Gary Bernstein, we investigated the scope of lateral quantum
devices utilizing the Aharonov-Bohm effect, quantum diffraction, and stub tuning in T-structure
electron waveguides. With respect to switching speed, we found that contrary to popular belief,
these devices are not necessarily slow. Even though their current carrying capability is small,
the threshold voltages for switching are also small so that the overall RC time constant can be
quite small.

The small threshold voltage also makes it possible to switch the devices optically rather
than electronically thereby eliminating the RC time constant limitation altogether. However,
the major drawback of these devices is the extreme sensitivity of the characteristics to slight
structural variations which may inhibit their applications in integrated circuits. In addition, the
fact that these devices typically operate in the linear response regime also preclude their use in
many conventional applications such as amplification or logic nodes requiring signal restoration.
Overall, we found that the most attractive feature of these devices is their multifunctionality

I which makes it possible to use a single device perform the task of many devices.

Relevant Publications:

* Analysis of the Device Performance of Quantum Interference Transistors Utilizing Ultra-

small Semiconductor T-structures, S. Subramaniam, S. Bandyopadhyay and W. Porod, J.
Appl. Phys. 68, 4861 (1990).

I * Quantum Devices Based on Phase Coherent Lateral Quantum Transport, S. Bandyopad-
hyay, G. H. Bernstein and W. Porod, Nanostructure Physics and Fabrication, eds. M. A.IReed and W. P. Kirk, (Academic Press, Boston, 1989), p. 183.

I2.11: Landauer Resistance of Finite Repeated Structures

Periodic structures are of interest since they are useful for many device applications and also
for the study of fundamental band structure effects such as Bloch oscillations. We have also
derived many useful theorems pertaining to the Landauer resistance of finite periodic structures.
The Landauer resistance is the quantum-mechanical resistance of a structure in the linear response
regime and is related to the transmission properties of electrons through the structures. These
theorems, along with a sum rule that we derived, can be applied to the calculation of bandstructure
of superlattices and their transmission properties.

I Relevant Publications:

o Properties of the Landauer Resistance of Finite Repeated Structures, M. Cahay and S.IBandyopadhyay, Phys. Rev. B., 42, 5100 (1990).
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Modulated Interfacial Disorder Scattering in
Quantum Wells and its Device Applications

Suyog Bhobe. Wolfgang Porod and Supriyo Bandyopadbyay
Department of Electrical and Computer Engineering. University of Notre Dame. Notre Daine. IN 46556. USA

David J. Kirkner
Department of Civil Engineerng. University of Notre Dame. Notre Dame. IN 46556. USA

We invesigate the naite of the electronic states and transient tranmport in a single, selectively doped. GaAs
quantum wel wbee the dopants are confined near one of the interfaces. The electronic states are calculated from
self-costent solutions of the Schrodinger and Poisson equtions and are used to compute the scattering rates for
electrons interacting with the doponts. These scattering rates are them used in a Monte Carlo simulation to study
the time-dependent decay of the momentum of an ensemble of electrons traveling parallel to the interface.

We also investigate the momentum relaxation of electrons injected into the well under different transverse
electric fields that skew the wavefuncoon towards one of the interfaces. When the wavefunction is skewed away
from the doped interface. the momentum relaxation time (and hence the mobility) increases dramaticaly by three
orders of magnitude. A device application of this phenomenon, namely the operation of a velocity modulation
transistor (VMT), has been investigated, with special focus on the transistor's switching speed.

INTRODUCTION transverse electric field, applied perpendicular to the
plane of the conducting channel, either depletes the
channel (and the transistor is switched off) or accumu-

The progress of microelectronics and computer tech- lates the channel, in which case the trar.sistor is turned
nology relies heavily on the continued development of on. The problem with this mode of operation is that the
faster and smaller electronic devices. Over the past transistor cannot be switched any faster than the time it
decade, electronic devices have shrunk rapidly in size takes to move carriers in and out of the channel, which
and have concomitantly become faster, but this trend is typically the transit time of carers from one contact
seems to be saturating. It is now realized that classical (termed 'source') to the other (termed 'drain'). An alter-
devices that operate on the principles of classical native way to realize the switching is to modulate the
physics. have either reached their limits or are about to channel conductance by modulating the mobility g
reach them. whereupon entirely new concepts are instead of the concentration n,. The mobility can
required for the next generation of devices. Future change on timescales of the order of the momentum
devices are expected to rely on quantum-mechanical relaxation time. which is typically much shorter than
principles for their operation and utilize quantum- the transit time. Thus, the latter mode of switching is
confined structures such as semiconductor quantum much faster than the former.
wells fabricated by molecular beam epitaxy or by The VMT employs the latter mode of switching. The
metal-organic chemical vapor deposition, mobility is modulated by engineering the electronic

One such device that has been proposed in the liter- wavefunction inside a quantum well which' acts as the
ature is the velocity modulation transistor (VMT), channel. A basic schematic of the VMT is shown in Fig.
which operates on the basis of 'wavefunction engineer- 1. The quantum well is selectively doped so that one-

ing' in a semiconductor quantum well. A velocity modu- half of the well is interspersed with impurities while the
lation transistor is an ultrafast switching device whose other half is undoped.
switching time can be smaller than I ps. The concept In the absence of any external transverse electric field,
that undergirds the operation of this transistor is the the electronic wavefunction is skewec, towards the
following. Any field effect transistor (FET) is switched doped region in the well where the potential is lower
between the 'on' and 'off' states by modulating the con- due to space-charge effects. The application of a trans-
ductance of the transistor. The conductance. in verse electric field (or gate voltagej, applied through the
Q/ [)- is given by gate terminal in Fig. 1. can lower the potential on the

G = en,,u ~undoped side of the well so that the electrons moveI =( towards the -ndoped side where the mobility is higher
where e is the electronic charge, n, is the carrier concen- due to the absence of in situ impurity scattering. The
tration in the two-dimensional conducting channel gate voltage therefore modulates the mobility of the
(such as the inversion layer in a conventional electrons by wavefunction engineering. The transistor is
MOSFET) and u is the carrier mobility, in the low conductance state (or 'off' state) when the

In a conventional FET, the conductance is modu- gate voltage is zero, and switches on when the gate

lated by modulating the carer concentration n,. A voltage is turned on. It shall be emphasized that the 'on'

0142-2421/n/100"0- 0 05.00 Reatsd 22 Nawodm I9I8
C 1919 by JoM Wiey & Son Ltd. 4CePWed 26 J1r 1499
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GATE are 'good quantum numbers', so that the wavefunction
__ _ ._ __ _ is given by

___isgivenbyO(x, y, z) = exp(ikx) exp(ik, y)o (z) (2)

MOM The eigenstates in the t and P directions are plane
SOURCE I DORAJUN wave states labeled by the wavevector quantum

Al~aft numbers k. and ky, while the eigenstates in the , direc-
_tion are quantized sub-band states denoted by 0.(z),

where n'& is the sub-band index. The normalized
S.L- GaAs envelope functions for the mth sub-band can be

obtained from the Schrodinger equation
h2 d2 o.,(z)

Figure 1. Schematic diagram of the velocity modulation tran- + -e(z)-+ V(-)]0.(z)= E. 0.(z)
sistor. Only one-half of the GaAs quantum wall is selectively 2m +E
doped. Current transport takes place parallel to the hetwo- (3)
interfaces (between the source and drain contacts). The potential V(z) accounts for all external fields, as

well as any band offset. The potential 0(z) is the electro-
static potential given by the solution of the one-
dimensional Poisson equation

and 'off' states here refer to high and low conductance
states as opposed to the customary label for states with d2 #z) efinite and zero current flows. (The wavefunctions inside c-'t o: N-  . ,z)[ Nr)'(z) 14)

the well in the 'off' and 'on' states are depicted in Figs 2

and 3. respectively). The concentration N (z) (in units of per unit volumei
The type of VMT just discussed was proposed by denotes the den-ity of ionized background impurities.

Hamaguchi and co-workers.2"3 It is slightly different Each sub-band with energy E, contributes to the total
from the original proposal of Sakaki.' where the mobil- electron concentration with N,, electrons per unit area
ity was to be modulated by pushing the wavefunction given by
closer to the well interface with a transverse electric m*ka T r i - E.
field. This increases the interface roughness scattering N,, = In 11 + exp( k9 T (5)
and decreases the mobility. The problem with the orig-
inal design of Ref. 1 is that the transistor is 'normally The Fermi energy is denoted by EF and we determine it
on' (at zero gate voltage), which causes stand-by power here such that the total charge inside the quantum well
dissipation in a circuit, whereas in the present design is zero (space charge neutrality).
the transistor is 'normally off' so that there is less stand-
by power dissipation. The present design is therefore
analogous to an enhancement mode FET, whereas the NUMERICAL METHOD
original design is analogous to a depletion mode FET.
Note also that in the original design, the channel
current decreases with increasing gate voltage so that The one-dimensional Schr6dinger and Poisson equa-
the transconductance of the transistor is negative tions were discretized using the finite element method
whereas in the present design the transconductance is (FEM).8 This technique has recently been applied to the
positive. The opposite sign of the transconductance in numerical solution of quantum mechanical problems.'
the two cases presents the intriguing pos.ibility of using Linear basis functions were used to interpolate the
the two designs to realize ultrafast complementary logic. wavefunction and space charge potential between nodal

In the next section we outline our model for analysis values. For the purpose of analysis. a 500-A quantum
of the VMT. and then we present the computational well was considered. The number of nodal points in the
scheme for calculating the self-consistent electronic quantum well was taken to be 2000. Sufficiently con-
wavefunctions. verged solutions were obtained with this number of

nodal points. It was assumed that the right half of the
quantum well was doped by donor impurities. so that

THEORY all the disorder was confined to near the right interface
of the well rather than being distributed uniformly
throughout the well. In all our analyses, the ambient

The electronic states of a quasi two-dimensional system, temperature was assumed to be 4.2 K.
such as a quantum well, have been studied widely in the The eigenvaiues E. and the eigenfunctions ,,(z) were
literature." Following the usual treatment, we first obtained by solving the Schrddinger equation. For
separate the electronic motion parallel to the interface this, the quantum well was assumed to be infinitely
from the motion normal to the interface. As long as the deep, and homogeneous boundary conditions were
effective mass of the electrons in the well is spatially imposed on the eigenfunction. The assumption of an
invanant, the parallel motion is decoupled from tne per- infinitely deep well greatly simplifies the numerical cal-
pendicular motion. We label the direction perpendicular cuiation. and results in accurate eigenvalues for energies
to the interfaces as the I direction and the plane parallel which are not too close to the edge of the quantum
to the interfaces as the 1-P plane. Since the Hamilto- well) The eigenunctions thus obtained were used in theIman is invariant in 2 and P, the wavevectors k, and k, Poisson equation to yield the space charge potential. To
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Figure 2. Self.consistent results of the quasi two-dimensional electron gas inside the quantum well for zero external bias. Shown are the
potential profile, the sub-band energies and the square of the corresponding wavefunctions.

solve the Poisson equation, the space charge potential mO is the effective mass of electrons in GaAs. & is the
and its slope were assumed to be zero at the right end of dielectric constant and A. is the screening constant. Since
the quantum well. This boundary condition reflects the quantum well in our model is relatively wide. we
overall charge neutrality for the quantum well. used the bulk Debye screening model to calculate

The following procedure was used to solve iteratively
the coupled system of Schr6dinger's and Poisson's N T (9)
equations. Let Os' be the potential input to the Schrdd- A e.T
inger equation in the nth iteration. The wavefunctions
obtained by solving the Schrbdinger equation were used The sceenng length 1/ turns out to be ca. I A in
to calculate the charge density on the right-hand side of our case. Because of such strong screening (which is

the Poisson equation. The solution of the Poisson equa- caused by the heavy doping), the scattering rates are

tion in the nth iteration is denoted by #,". The next rather small, typically between 2 x 10' and 8 x 109 s-'.

update for the potential to be used in the (n + )th iter- The strong screening, however, allows us to neglect the

ation in the Schrddinger equation is then obtained from effects of remote impurity scattering when the wave-
function is skewed away from the doped region of the

0;+ O0s" + (O" - Os) " a (6) welL

where ., is the so-called convergence factor, which is The scattering rates obtained from Eqns (7), (8) and

taken from the interval 0.0-1.0. A high a value can give (9) were then used in a Monte Carlo simulation" to

rapid convergence, but may cause oscillations. A low a extract the momentum decay characteristics of an

value, on the other hand. reduces the rate of con- ensemble of electrons injected into the quantum well

vergence but eliminates such oscillations. The iterations with the Fermi velocity. The Monte Carlo simulation

were continued until convergence was achieved. Con- was used to predict the momentum relaxation rate for

vergence was deemed satisfactory when (0 - various gate voltages. In the simulation, we have con-
S< . where a was set to 0.0001. A lower value of sidered only in situ impurity scattering and neglected

did not result in any significant increase in accuracy. remote impurity scattering because of the strong screen-

The squares of the wavefunctions were integrated ing. We have also neglected phonon scattering based on

over the doped region in the quantum well to obtain the the premise that at 4.2 K, phonon interactions are sig-
'effective' number of impurities, N,t, that interact n situ nificantly weaker than impurity interactions. In addi-

with the electrons tion, since there is no electric field in the direction of
electron motion, the electrons never gain enough energy

fN(x) I OJx) 12 dx (7) to spontaneously emit polar optical phonons. Thus,
there is no dissipation in our system. The simulations
were run for sufficiently long times to ensure that the

The above integration is performed over the selectively momentum relaxes to zero before the simulation isSdoped regions of the quantum well. This 'effective' terminated. Each simulation was performed for an
number was calculated for various gate voltages that ensemble of 10000 electrons to obtain statistically reli-
skew the wavefunctions by different amounts. From the
'effective' number, the scattering rates for impurity inter- able estimates.

action.10 l/r(E), were calculated using Fermi's Golden
Rule

I Nf me4  (8) RESULTS

Ik) w 4A3S2./A 2 + 4k (8) We have pgrformed calculatons for a quantum well

where k is the Fermi wavevector given by k = ./2xn,. that is 500 A wide. The right half of the well, from 250
where n, is the two-dimensional electron concentration, to 500 A, is selectively doped with donor. We chose a

iI IlI
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Figure 3. Self-consistent results of the quasi two-dimensional electron gas inside the quantum well for an external bias of 0.4 V. Shown
are the potential profile, the sub-band energies and the square of the corresponding wavefunctions.

doping concentration of ND = 2 x l0l m -. This cor- Table I shows the rates for ionized impurity scat-
responds to a density of n, = 5 x I0"' m- 2 of the quasi tering for various gate biases. These rates were calcu-
two-dimensional electron gas. lated from Eqns (7), (8) and (9). Note that the variation

In our calculations, we assume that all donors are in the scattering rates spans almost three orders of mag-
ionized. i.e. that they contribute to the positive back- nitude. This shows the extreme sensitivity of the scat-
ground charge in the right half of the quantum well. tering rate to the gate bias.

This is a reasonable approximation for very shallow- The scattering rates given in Table I were used in a
level donors at 4.2 K. All electrons are assumed to Monte Carlo simulation of electron transport to extract
remain in the quantum well and not to spill over to the the momentum decay characteristics and the momen-
barriers, resulting in a constant density of the quasi tum relaxation time. Figure 5 shows the various
two-dimensional electron gas. momentum decay characteristics for various gate biases.

We show typical results of our calculations in the fol- The momentum relaxation time is defined as the time
lowing figures. Figure 2 shows the potential profile that elapses before the momentum decays to lie times
inside the quantum well, with the corresponding wave- its initial value. From the momentum relaxation time,
functions for zero gate bias. Figure 3 displays the same we can calculate the effective 'mobility' in the quantum
data for a gate bias of 0.4 V. All results are valid for a
temperature of 4.2 K.

We see that by increasing the bias, the wavefunctions
are indeed pushed to one side of the well-the undoped Table 1. Scattering rates vs. gate voltage
side in this case-which will increase the overall mobil-
ity. The variation of the Fermi level and sub-band ener- Ge - M Scam" n" Is-)

gies with gate bias is also shown in Fig. 4. Note that all 0.0 8 X 10
energies are measured with respect to the potential 0.1 6 X1o

energy at the right edge of the quantum well, which is 0.2 1 X 10'
0.3 2 x 108

the energy associated with the unscreened externally 0.4 2 x 10'
applied gate bias (cf. also Figs 2 and 3).

400.00

300.00 -.

>

200.00 . .:9"9

0.00 , L, J 0 ,

00.25.25 0.00 0.25 0.50

Gate Voltage (V)

Flgume 4. Variation of the sub-band enegies with gts bias. The vanaton of the Ferm lrei. corresponding to chag neutrlity, is also
shown.I
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Figure 5. Momentum decay for an ensemble of electrons with initially aligned momenta. Note the large variation in the momentum decay
times uoon changes of the gate bias.

well by using the well-known formula indicate that, for optimum performance. the quantum
well must be relatively lightly doped so that the carrer

e,(10) concentration (and hence the screening) is much lower.I M*
Once the mobility is known. the conductance of the
VMT can be calculated from Eqn (1). Table 2 lists the CNLSO
conductances for various gate biases. Note the conduc- CNLSO
tance can be modulated over approximately three
orders of magnitude (which gives a peak-to-valley ratio We have investigated electronic transport in a quantum
of 1000 for the current through the VMT) by varying well using the detailed nature of the electronic wave-
the gate bias over a range of only 400 mV. This modu- functions in the well. The results are self-consistent
lation can be achieved typically on timescales of the insofar as they account for space-charge effects. We
order of the momentum relaxation time. In our simula- have specifically investigated an intriguing device appli-
tion. the momentum relaxation time is rather long. of cation of wavefunction engineering in a quantum well.Ithe order of 10 - ' s. which is caused by the fact that the namely the operation of a velocity modulation tran-
impurity scattering is strongly screened by the rather sistor."We found that such a transistor can be switched
large electron concentration. For ultrafast switching, the by a relatively small gate voltage of 400 mV to yield a
conductance modulation must be achieved in timescales peak-to-valley ratio of the 'on' and 'off' conductance
of the order of a picosecond or less. Thus. our results approaching a factor of 1000. This gives nise to an

extremely large transconductance. which translates into
an extremely large frequency range of operation for theITable 2. Couducucmvpe voksg VMT that could be orders of magnitude larger than
those achievable with conventional FETs.
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MODULATION OF IMPURITY SCATTERING RATES BY WAVEFUNCTION ENGINEERING
IN QUASI 2-D SYSTEMS AND ITS DEVICE APPLICATIONS
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University of Notre Dame

Notre Dame, IN 46556

ABSTRACT

We investigate impurity - scattering - limited electronic transport in a quasi 2-d electronic system. For the
calculation of the impurity scattering rates, we account for the self -consistent dependence of the electronic states
on the precise configuration of the scattering centers. Based on this, we investigate the physical mechanism of
mobility enhancement in delta-doped semiconductor structures.

KEYWORDS

Delta Doping; Impurity Scattering; Wavefunction Engineering; Monte Carlo

INTRODUCTION

Recent advances in epitaxial growth techniques have made it possible to dope semiconductor microstructures

selectively. A major advantage of selective doping, such as delta-doping, is that the mobility of the resulting
two-dimensional electron gas can be much higher than what can be attained with uniform doping (Gillman et al.,
1988; Schubert et al., 1989; Hong et al., 1989). Recently, it was pointed out that spatial ordering of the dopant
atoms in the plane of the delta dopants can also lead to a further enhancement of the mobility (Levi et al., 1989).

In this paper, we investigate the physical mechanism of mobility enhancement in delta - doped structures. Our
formalism is based on a quantum-mechanical analysis in which we first evaluate the electronic states in a quantum
well sel -consistently by solving the Schr6dinger-Poisson equations. From the electronic states, we calculate the
exact matrix element for impurity interaction and from this the scattering rate, or alternatively the impurity-
scattering-limited mobility. We then use the scattering rate to perform a Monte Carlo simulation of the momentum
decay of electrons in the quantum well. The momentum relaxation time is estimated from the Monte Carlo
simulation from which the mobility and the conductance can be obtained.

The mobility depends on the precise configuration of the impurities (scattering centers) within the structure
for two reasons. Firstly, the electronic wavefunctions depend on the exact shape of the self-consistent potential
(produced by the space-charges) which in turn depends on the precise locations of the impurities within the
structure. The wavefunctions determine the matrix element so that the scattering rate has an indirect dependence
on the impurity coordinates. Secondly, the Coulombic interaction potential, that appears in the matrix element,
is itself an explicit function of the impurity coordinates. This is a direct effect which makes the mobility strongly
configuration-dependent. As a result, the mobility in a structure can be altered significantly by tailoring the
positions of the dopants within the structure.
The so-called velocity modulation transistor (VMT) is a device designed to exploit the modulation of the mobility
by wavefunction engineering (Sakaki, 1982; Hamaguchi et al., 1984). For the study of the switching behavior of
the VMT at low temperatures, the impurity scattering rates have to be known as a function of the applied bias
and the configuration of the impurities. We present here results for the momentum relaxation times for various
gate voltages and various arrangements of delta - doped impurity sheets.

ELECTRONIC STATES

The electronic states of a quasi two-dimensional system have been studied widely in the literature (Stern, 1972
Yokoyama and Hess, 1985). Following the usual treatment, we write the electronic wavefunction, using = (z, y),
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(z, y, z) = &k 'l,(z) (1)

where the normalized envelope function 0,,(z) for the ruth subband can be obtained from the 1-d Schr6dinger
equation, with z denoting the direction perpendicular to the interfaces.

h' d'tk,,(z)
- + [-eo(z) + V(z)],.(z) = E,,O,,(z) (2)

The potential V(z) in the above equation accounts for all external fields and band offsets, while the potential
0(z) is the self-consistent space-charge potential obtained from the l-d Poisson equation.

=~z -- F M~ 0(zj - N+z) 3)
dz2 CE r.I

The concentration N (z) denotes the density of ionized background impurities. The functional dependence of
ND+(z) on the z-coordinate is determined by the nature of the doping. In the case of delta-doping corresponding toa sheet of charges, ND+(z) is a delta-function located at some coordinate zo. For uniform doping, it is a Heaviside

function, and so on. The quantity N. is the contribution to the total electron concentration (per unit area) from
the mth subband. It is given by

N, = M ,kT1  + exp( EF-E . 4)

7 2 n 1k 9 T

where EF is the Fermi energy which is determined in every case such that the total charge inside the quantum
well is zero (space charge neutrality).

IMPURITY SCATTERING RATES

Once the wavefunctions are determined, we compute the impurity scattering rates as follows. rhe rate for an
electron to be scattered from an initial state k to a final state k' by ionized impurities is given by Fermi's Golden

itule,

I A u'dpj IJ'm(z)I V.,,(p,z)dz Ek-k)

where V,(p, z) is the impurity interaction potential which is screened Coulombic or Yukawa-type in nature. For
a sheet of charge located at zo, it is given by

e2  eAV , "z -()S
vi,,(p. Z) = V..(p, Z) = 4-7,/o7 , _7 (6)

where A is the screening constant.

It is important to note that in calculating the matrix element in Equation (5), we considered only intra-subband
transitions. Impurity scattering can cause inter-subband transitions (without involving a change in the total
energy), but the accompanying momentum change is so large that it can only be caused by the short-range tor
large wavevector) components of the scattering potential. Since we consider weakly-screened impurities, this is
not an important process. Finally, the total rate, I/r(k), is obtained by summing lir(k, ') over all final k's,

I/lr(k) =f E Il( 1 ' (7)

To study the configuration dependence of the impurity scattering rates, we arrange the constant number of dopants
inside the well in several different ways. The case of uniform doping was treated by us in the past (Bhobe and
co - workers, 1989) and will be omitted here. In the present study, we arrange the dopants in a number of delta
- doped sheet@ whose total number is denoted by N6. The sheet density of impurities at location z0 is denoted
by n. which is given by n, = ns/No, where ns is the total sheet density of dopants in the quasi 2-d system. As
one can see, the case of uniform doping is a limiting case corresponding to a large number of doped sheets (N6
-* 00) with correspondingly low sheet doping density.

We now distinguish between two different cases for the calculation of the impurity scattering rates. In one case.
which we term the "coherent" case, the scattering potential V.,(p, x) is the arithmetic sum of the potentials of
the various delta-spikes

U
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NA

i,,,(p,-Z) = V ,(p,Z) (8)

This corresponds to the situation where the electronic wavefunction is coherently scattered by all delta - doped
sheets. This situation will be realized if ordering in the z-direction exists, yielding correlations of the dopant
location in adjacent impurity sheets. In the second case, which we term the "incoherent" case. the scattering rate
due to all the sheets is the sum of the scattering rates for each individual sheet. This case corresponds to the
situation when there is no correlation or phase coherence between scattering from different sheets.

The scattering rates for the two cases are then

I/(r~' 2r Elf ]e1'''d 2 P]) 10(-w IV))2  ,Z dz 6(Ek - Ea,) (9)

and

lf/n(k 2r v e' - ')'dP JI '. (z)i' Va' (pz)dz 6(Ek - Ek') (10)

It is easy to see that in all cases I/r(k,. V)ckt' '  >

Finally, these scaterring rates are used as input to a Monte Carlo computer simulation to study the momentum

decay of an ensemble of electrons subjected to impurity scattering.

I RESULTS

We investigate the configuration-dependence of the impurity scattering rates in a GaAs-AIGaAs quantum well
which is 500 A wide. The right half of the well, from 250 to 500 A, is doped with a fixed concentration of donors
of 5 x 1015 m- '. For the case of uniform doping, this corresponds to a doping concentration of ND = 2 x 1013 m -3 .
In particular, we consider the cases where this number of dopants are arranged in a discrete number of equaly

32510 1 00.0
ALG4,A G&M ALGeA Alick-koa GaLA2

n 7 NI- I fOO N.-I

Omm Voltagea.0ov Gae Vekii-.V

11510 - 3leO -

10 10&i .

i LO. Iwo 4S.O 0 MO . . 300 eO E
Dim (. pa=) Dime (A spwm)

Fig. 1. Shown are the self-consistent potential, Fig. 2. Shown are the self-consistent potential.
the lowest two eigenstates and the corresponding the lowest two eigenstates and the corresponding
eigenvalues for a single delta-doped sheet, Ns = 1. eigenvalues for a single delta-doped sheet, N - 1.
No external bias is applied. An external bias of 0.4 V is applied.

spaced delta-doped sheets, Ns. We report results for 12 different values of No, namely N6 = 1, 10, 15, 20. All
our calculations are performed for a temperature of 4.2 K.

We assume that all donors are ionized and that all carriers remain inside the quantum well, thus leaving the total
system charge-neutral. This appears justified for shallow donors at 4.2 K. The quasi two-dimensional electron
gas, therefore, has a constant density of ns = 5 x l0is m-2 , independent of the spatial arrangement of the
donors. In Fig. 1 and Fig. 2, we show for two different biases the self-consistent potential and the corresponding
wavefunctions for the case of a single delta-doped sheet, N, = 1. The location of the delta-doped sheet can be
inferred from the cusp in the potential. For the case without external bias, which is depicted in Fig. 1, the
electrons are concentrated at the location of the delta-doped sheet because of the Coulombic attraction of the
ionized donors. The external bias, as can be seen in Fig. 2, has the effect of pushing the carriers into the left half
of the quantum well, which is undoped.

Similar behavior is observed if several sheets of dopant atoms are placed with equal spacings inside the doped,

I m



1654 S. BHORE et al.

2.= '00 , " T . . . . . . E . . 4 .0 0 . . . . f " " I,

.[ '.G a t e V olt g e = .0v 6. - a te V o ta g e = 0O .0v
.-. I I_,.

1.0 2.5 -/

00.50 020 0.75 -

0.5o 0 1 2 3 4 5
Energy (eV) Number of Dopant Sheets Ns

Fig. 3. Shown is the energy dependence of the Fig. 4. Shown are the scattering rates for the
coherent scattering rate for several numbers of coherent and for the incoherent cases as a function
dopant sheets. No external bias is applied, of the number of dopant sheets, N6 .

right hand side of the quantum well. We have obtained the self - consistent potentials and wavefunctions for the
12 values of NS and for 5 values of external gate bias, namely V = 0, 0.1, 0.2, 0.3, and 0.4 V. Larger values of the
bias would lead to a significant leakage of carriers out of the well because of the smallness of the potential barrier
between GaAs and GaAIAs.

These wavefunctions are now used for the calculation of the coherent and incoherent scattering rates for various
doping conditions. A screening length of 313 A is used. In Fig. 3, we show the energy dependence of the coherent
impurity scattering rate for an unbiased quantum well. We see that the scattering rate increases as the number
of delta-doped 3heets increases. A comparison between the coherent and the incoherent rates is shown in Fig. 4.

We see that the coherent rate increases almost linearly as the number of doping sheets N6 increases. This is due to
the fact that the square of the matrix element increases as - N,2 whereas the concentration in each sheet decreases
as -. I/Ns. Consequently, the scattering rate increases as ,- No. In the incoherent case, the main difference is
that the square of the matrix element increases as - N6 instead of as - NI so that the rate remains relatively

independent of N6 . It therefore appears that in the presence of coherence, the highest mobility is achieved when
Ns = I or when a single sheet, rather than many sheets, is used to dope the layers.

In comparing our results for the coherent and incoherent cases, we see that coherence, which arises from ordering
in the z-direction, increases the scattering rate. This should be contrasted with the usually found decrease of the
scattering rate for ordering within the delta-doped plane (p plane). We believe that this behavior arises because
of the different character of the electronic states in the directions perpendicular and parallelto the dopant sheet.
In the z-direction the wavefunctions are standing waves which leads to constructive coherent superposition in the
matrix element. Along the sheet, however, the wavefunctions are propagating plane waves and ordering has the
effect of sharpening the Bragg reflection peaks at regions of high momentum in the Brillouin zone which are no

longer occupied by electrons.

1.00 LOD0

. ~ ~ a Gte Voltage=O.4V

075 7" 0.75 "a

V 0.50 .0050-
.I 

, 
A

10.25 g 0.S2

z
0 10. 10" 1" 1O" 10" 10 3 i-t10 1io 10* to" 0(0)f0 10"1 10" 10" 10' 10

Time (Second) Time (Second)
Fig. 5. Shown is the momentum decay for several Fig. 6. Shown is the momentum decay for a bias
bias voltages and for the case of one dopant sheet. voltage of 0.4 V and for various values of N6.

We also investigate the effect of an externally applied electric field on the scattering rates in the quantum well.
Previously, we have seen that by applying an appropriate gate voltage the electronic wavefunction can be shifted
to a region of the quantum well which is free of dopants. As a result, the impurity scattering rate decreases
because the impurity potential is removed from the peak in the electronic wavefunction. We have calculated the
coherent scattering rates for the full sequence of Ns and bias voltages.

These scattering rates then are used to investigate the momentum decay of an ensemble of electrons moving in
the plane of the quantum well. The Monte Carlo technique is used to simulate the behavior of carriers injected

I
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with energies at the Fermi energy. The momentum decay for several combinations of bias voltages and numbers
of dopant sheets is shown in Figs. 5 and 6.

We see that momentum relaxation is a strong function of the applied bias. We define a momentum relaxation
value. In Table 1, we shown our results for the momentum relaxation time r, as a function of the applied bias

and the number of delta - doped sheets.

Table 1 Momentum Relaxation Times

V= 0.0 V= 0.1 V =02 V=0.3 =0.4
N6 = 1 3.92 x 10"  40 -  2.2 0 I 4 4.25 x 10-1
N6 = 2 2.99 x 10-11 4.13 x 10- 1s 1.34 x 10-13 1.22 x 10" 9.93 x 10-"'N6 =3 2.29xi10 - l' 3.18xI10 - 11 9.45xI10-14 6.00xi10 - 12 4.77x 10" l

N6 = 4 1.93 x 10" s 2.62 x 10's 7.18 x 10- 14 3.64 x 10-12 2.76 x 10-"
N6 = 5 1.64 x 10-" 2.30 x 10 - l 5.91 x 0- 1  2.54 x l0- 1  1.88 X0 -11
Ns =-6 1.39Xi10 - ' s 1.97 x10 -'s 4.94x 10- 14 1.91 x 10- 13 1.46 x 10" t

N6 = 7 1.23 x 10" 1.75 x 10" 4.19 x 10-4 1.59 x 10-11 1.19 X 60
-

1.
N6 = 8 1.10 x 10" 1.60 x 10' s 3.68 x 10-1 4 1.31 x 0-12 9.58 x 10-
N6 = 9 9.85 x 10-'6 1.45 x I0' s 3.27 x 10- 4 1.14 x 10-'2 8.36 x 10-12
N6 = 10 8.88 x 10"  1.28 x 10" 2.96 x 10- 14 9.90 x I0-13 7.26 x 10.12
Ns = 15 6.21 x 10- 1 9.04 x 10-16 1.95 x 10-14 6.28 x I0- 4.25 x 1012
N8 = 20 4.77 x 10- 16 7.00 x 10 -'c 1.46 x 10' 4.34 x 10- 13 2.99 x 10-12

Our calculations show that application of a gate voltage of 400 mV increases the relaxation time by approximately
5 orders of magnitude when the quantum well is doped with one impurity sheet. However, when the quantum well
is doped with twenty impurity sheets, application of a 400 mV gate voltage increases the momentum relaxation
time (assuming "coherent" scattering) by only 4 orders of magnitude (see Table I). This modulation of the
impurity scattering rates translates into a significant modulation of the channel conductance for a VMT.

* CONCLUSION

We investigate the dependence of impurity scattering rates in a quantum well on the configuration of the impurities
and on the external bias. Application of an external bias reduces the impurity scattering rate by several orders of
magnitude with be a corresponding increase in electron mobility and channel conductance. One can thus realize
a switching transistor by skewing the wavefunction with an appropriate external electric field. Obviously, the
performance of such a transistor will be influenced by dopant ordering.

We find that selective doping, in which the dopants are confined to a single plane rather than being distributed
over several planes, has the effect of decreasing the ionized impurity scattering rates for coherent scattering. In the
case of incoherent scattering, i. e. in the absence of correlations between impurity centers, the mobility exhibits
a weak dependence on the impurity configuration. This immediately suggests that a given gate voltage is more
effective in modulating the conductance when the quantum well is doped with a smaller number of dopant sheets.
Thus, the switching performance of the VMT is improved when doping in the quantum well is concentrated into
fewer dopant sheets.
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TAILORING TRANSPORT PROPERTIES BY WAVEFUNCTION
ENGINEERING IN QUANTUM WELLS AND ITS DEVICE APPLICATIONS'
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We investigate a semi-classical mesoscopic phenomenon in which the depen-
dence of a system's macroscopic transport properties on the microscopic details of
the electronic wavefunction is exploited to realize an ultrafast switching transis-
tor. The conductance of a quantum well with a selectively-doped region depends
on the precise nature of the wavefunction in the well which can be altered by
an external field that "'pushes" the wavefunction in and out of the doped region.
This modulates the conductance of the well (by few orders of magnitude at liquid
helium temperature) on timescales of the order of 100 femtoseconds. We have
investigated this phenomenon using a combination of self-consistent Schr~dinger
Equation solution and ensemble Monte Carlo simulation to model transient elec-
tronic transport in the well.

1. INTRODUCTION

It is generally believed that mesoscopic "quantum devices", whose operations
rely on quantum mechanical phenomena, will be much faster than classical devices
such as an ordinary field-effect-transistor. The reason for this is that classical
devices are switched by moving carriers in and out of the device so that the
switching time is limited by the transit time of carriers. Quantum devices. on the
other hand, do not usually require infusion and extraction of carriers. Typically,

I they are switched by inducing constructive or destructive interference of electrons

'This work was supported by the Air Force Office of Scientific Research.
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which does not require physical movement of charges. Therefore, the switching
speed of quantum devices is not likely to be limited by the transit time of carriers 2 .

Although quantum devices have this inherent advantage, they also have cer-
tan disadvantages. Devices that are based on phase-coherent phenomena (such
as interference) must have dimensions smaller than the phase-breaking length of
electrons which is given by

Lo = VDr.,(1)

where 7i'n is the inelastic scattering time and D is the diffusion coefficient of
electrons which depends on the elastic scattering time or "mobility".

It is evident that quantum devices will have the following drawbacks. Firstly,
they must be operated well below room temperature so that r,, is sufficiently
large. Room temperature operation would require such small feature sizes that
the lithographic capabilities necessary for delineating them are presently unavail-
able. Secondly, the material for the devices must be sufficiently "clean" since D
depends on the elastic scattering time and hence the mobility u. This is quite
critical in two- or three-dimensional structures in which elastic scattering is far
more frequent than inelastic scattering at cryogenic temperatures. Only in one-
dimensional structures, the cleanness of the material is not that critical because
of the drastic suppression of elastic scattering by one-dimensional confinement 3 .
But one-dimensional structures (quantum wires) are not easy to fabricate and their
current carrying capability is inherently low which makes them inappropriate for
many applications.

There is however at least one semi-classical device that combines the advan-
tages of both quantum devices (fast switching speed not limited by the transit time)
and classical devices (no requirement of phase coherence and associated compli-
cations). The principle behind the operation of this device is very simple. The
conductance of a two-dimensional structure such as a quantum well is given by

G (in (1/o)-) = qni (2)

Instead of modulating G by modulating n, (as is done traditionally), one can
modulate it by changing p. The advantage is that 1 can be changed on umescales
of the order of the momentum relaxation time so that the switching speed of such
a device is not limited by the transit time.

2 There are exceptions however. An example is the electrostatic Aharonov-
Bohm interferometer in which the switching speed is in fact limited by the
transit time of carriers.

'This does not mean that one-dimensional structures can be arbitrarily
"dirty" since many quantum interference effects may not survive in the strong
localization regime.
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The important question now is how to modulate Mi. The mobility depends
on the scattering rates of electrons which (even in the semiclassical formalism of
Fermi's Golden Rule) depends explicitly on the electronic states (wavefunctions) in
the system. By applying an external field, the wavefunction in a quantum well can
be altered - it can be skewed and pushed in and out of a selectively doped region
within the well - which modulates the scattering rates and the mobility. Such
wavefunction engineering is essentially similar to the quantum-confined Franz-

Keldysh effect. When the wavefunction resides mostly the doped region, the
mobility is low, otherwise it is high. If we neglect the time required for skewing
the wavefunction (which is very small) then the switching time of such a device
is essentially the momentum relaxation time which can be less than a picosecond.

Such a device, termed a velocity modulation transistor (VMT), has been pro-
posed by Hamaguchi and his co-workers [1]. In this paper, we analyze this device
and evaluate the magnitude of the conductance modulation as well as the switching

i time.

II. THEORY AND COMPUTATION

The electronic states of a quasi two-dimensional system, such as a quantum
well, have been studied widely in the literature (2]. We have calculated the wave-
functions inside a 500 X GaAs-AIGaAs quantum well, whose right-half [ 250 -
500 A I is doped with impurities. The wavefunctions are obtained by solving
self-consistently the Schrdinger and Poisson equations using the Finite Element
Method. The details of the calculation are presented in Ref. 3. We assume a
carrier concentration of 5 x 10l1 cm - 2 and an impurity concentration of 2 x 1017
cm- 3 in the selectively doped region. The wavefunctions and the energy levels
are shown in Fig. 1.

The scattering rate of two-dimensionally confined electrons in the well is
obtained from Fermi's Golden Rule and is given by

1 Neffimne 4  (3)
r(k) 4haf2A/A.T -+4k2

where k is the Fermi wavevector (k = V2=:r=.), n, is the two-dimensional
electron concentration, m" is the effective mass of electrons, c is the dielectric
constant and A is the screening constant which was taken as 300 XA for GaAs.

The term in the above equation that depends explicitly on the precise details of
the wavefunction is the so-called effective impurity density Neff which is related
to the "effective" number of impurities that interact in situ with the electrons. This
quantity is obtained as

Ne! f fdoped region ND(X) I203(x)I'dx (4)
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where V),m(x) is the wavefunction of the mth. subband in the well. The integra-
tion is performed over the selectively doped regions of the quantum well. This
"effective" density was calculated for various electric fields applied transverse to
the well interfaces that skew the wavefunctions away from the doped region by
different amounts. It is easy to see now that the scattering rate can be modified
by altering 4'm,(x) by a transverse field (or equivalently a "gate voltage") which

alters Neff.

l400 T _

Gate Voltage = 0.0 V

E 300
25 .Ga,.. GaAs AI,Ga,.,

0
CL 200
o2 
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0 100E,

U-) E,
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1
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S600
a IG,,sG~ AI.Ga,,A
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°
0 0 150 300 450 600 750
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Fig. 1. The self-consistent potential and the wavefwUctions in the two lowest
occupied subbands in the selectively-doped GaAs-AlGaAs well in the absence (top

figure) and presence (bottom figure) of a gate voltage.
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The scattering rates obtained from Equations (3) and (4) for various gate-
voltage-dependent O m (x) were used in a two-dimensional Monte Carlo simulation

to model transient electronic transport at 4.2 K. From t.,h simulation results, we
extracted the momentum decay characteristics of an ensemble of electrons injected
parallel to the interfaces of the well with the Fermi velocity. We included only
the impurity scattering mechanism in the simulation and neglected all other kinds
of scattering. The impurity scattering rate was found to he sufficiently high to
be dominant at 4.2 K. Fig. 2. shows the decay of the initial momentum with
time at various gate voltages. From the decay characteristics, we evaluated the
momentum relaxation time 7, by defining 7m to be the time that elapses before
the ensemble average momentum decays to I times its initial value. From the
momentum relaxation time, we calculate the effective "mobility" in the quantum
well using p = erm/in, and from this we obtain the conductance G using
Equation (2).

1.00 - - --
.... ........

VvO.0 ,-.- OI "

0.75 - V 1 .... ,,.u0.2 V -

0.50
C) ... O \,'V . 3 V

0

o0.50 "V.-0.4 V -

z

0 ".) ., 1 0 " 1 0 1
3
1  

1 0 . 12 1 0 ""1 0 . 10

Time (Second)

Fig. 2. The decay of the initial momentum of an electron injected parallel to
the well interfaces at various gate voltages. The results are valid for a temperature
of 4.2 K. These curves were obtained from ensemble Monte Carlo simulation.
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Gate voltage Scattering rate Conductance

MV (sec - ) On_/____)__1_

0.0 3.8 x 1013 5.5 x 10-

0.1 3.0 x 1013 6.9 x 10- 5

0.2 6.5 x 1012 3.2 x 10- 4

0.3 8.0 x 1011 2.6 x 10- 3

3 0.4 8.3 x 10' °  2.5 x 10- 2

Table 1: Scattering rates and conductance vs. gate voltage

I Table I above lists the conductances for various gate voltages. Note that the
conductance can be modulated over more than three orders of magnitude by varying
the gate bias over a range of only 400 millivolts at 4.2 K. The mnodulation will
certainly decrease significantly at higher temperatures due to phonon scattering, but
the rather small threshold voltage of 0.4 V still indicates a large transconductance
and also a very low power-delay product. In addition, the switching speed, being
of the order of the momentum relaxation time, is about 100 fs which is comparable
to the switching speeds of quantum devices presently extanL In these respects, the
performance of this device is quite comparable to the performance of ultra-high
performance quantum devices.

III. CONCLUSION

In this paper, we have explored a semi-classical device whose performance
is comparable to those of mesoscopic quantum devices but whose fabrication is
much easier. It is an interesting example of a mesoscopic phenomenon where a
macroscopic property, namely the conductance, depends on the microscopic details
of the electronic wavefunction. The advantage here is that there is no requirement
of phase coherence so that the device could operate at elevated temperatures and
the demand on the material quality is not stringent.
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A proposed quantum wire structure: An "accumulation wire" at crossing
heterointerfaces
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We demonstrate that a quasi-one-dimensional quantum wire can, in principle, be produced at the
crossing point of heterointerfaces. We show that the intersection of two accumulation layers,
which are formed along separate heterointerfaces, realizes an "accumulation wire." Our
theoretical analysis yields potential distributions which possess confined electronic states in the
vicinity of the point of intersection. In our design, confinement in the quantum wire is solely
provided by the inherent electric fields associated with heterointerfaces without the need for
additional lithography. In other words, our proposal of the quantum wire compares to previous
designs in the same manner in which a quasi-two-dimensional (2D) system in an accumulation
(or inversion) layer compares to a quasi-2D system in a quantum well.

I. INTRODUCTION More specifically, we concentrate on a model system
Semiconductor structures with reduced dimensionality have which consists of perpendicular accumulation layers, and we
been the subject of much recent research. These quantum investigate if it is possible to produce an "accumulation
confined systems are expected to exhibit superior properties wire" at their point of intersection. We theoretically study
as compared to more conventional semiconductor struc- the potential distributions and electronic states at the inter-
tures. Improved optical characteristics' 2 include larger section by solving Poisson's and Schr6dinger's equation,
electroabsorption and electrorefraction, enhanced optical taking into account the potential discontinuities at the inter-
nonlinearities, and higher differential optical gain. These faces. An isolated quantum wire will only be produced if the
structures are also expected to show unique electrical trans- Fermi energy is such that the electrons accumulate only at
port properties and to have extremely high electron mobili- the crossing point, and not at the heterointerfaces them-
ties due to suppressed impurity scattering.3  selves. We study doping conditions and material combina-

Quasi-one-dimensional (1 D) systems, so-called quantum tions forming such an isolated accumulation wire.
wires, have been realized using a variety of techniques. Al- The theory of potential distributions and electronic states
most all of these techniques are based on the principle of in quantum wires has previously been studied. The potential
providing additional, lateral confinement for a quasi-two- distributions have been determined for narrow channel"
dimensional electron gas (2DEG) by lithographic means. geometries. The electronic states have been obtained using
The 2DEG is realized in Si systems at the Si-SiO, interface, variational wave functions' 4 and self-consistent solutions to
and in the GaAs/GaAIAs material system either at a single Schr6dinger and Poisson's equations. "
heterointerface or inside a quantum well. Lateral confine- We proceed in Sec. [1 by outlining our model system to
ment is achieved by additional processing steps, such as etch- investigate crossing heterointerfaces. In Sec. Ill. we detail
ing and regrowth, 5 deep mesa etching, .7 electric field con- the numerical techniques used for this theoretical study. Re-
finement, 9 shallow etching,'o epitaxial growth on a tilted suits are presented in Sec. IV for the GaAs-AIGaAs maten-
substrate," and focused ion beam .-aplantation. 2  al system. Finally, we conclude in Sec. V.

In this paper, we explore the possibility of creating quan- 1I CROSSING HETEROINTERFACES
turn wires by the exclusive use of the internal electric fields I
associated with heterointerfaces. Specifically, we investigate The model structure which we consider here for the study
whether quasi-two-dimensional (2D) confinement of elec- of crossing heterointerfaces is schematically depicted in Fig.
trons can be achieved at crossing heterointerfaces. It is well 1. The two-dimensional spatial domain with coordinates
known that a heterojunction may provide ID confinement in (xy) is subdivided into three different regions with inter-
the direction perpendicular to the interface, which is the ba- faces between them. Each of these regions, denoted by i, I,
sis for the device operation in a high electron mobility tran- and III, may be occupied by a different material. In general,
sistor (HEMT). It is then natural to ask whether and under we then have three different heterointerfaces, denoted by A.
what conditions a pair of heterointerfaces may provide 2D B, and C, which intersect in the center point, W. It is right at
confinement. In that case, quasi-2D confinement is achieved this center point, where the accumulation wire is expected to
solely by built-in electric fields which distinguishes our pro- exist.
posal of a quantum wire from the earlier designs where litho- Such a structure could, in principle, be realized by grow-
graphic techniques are required. In other words, our propos- ing material II epitaxially onto I, then.polishing the sides,
al of the quantum wire compares to previous designs in the and epitaxially growing material fI onto the side faces. Al-
same manner in which a quasi-2D system in an accumula- ternatively, region III might represent a filled-in V groove
tion (or inversion) layer compares to a quasi-2D system in a etched through the interface betweewmaterials I and II, al-
quantum well. though the heterointerfaces would not be perpendicular to
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C the background doping. We assume that all dopants are ion-
ized, i.e., N 1 is constant throughout each region and has the
value of the nominal background doping. The electronic
charge density, for degenerate statistics, is given by the Fer-
mi-Dirac integral of order 1/2, n(r) =N,(7r/2)F/2 (7l),

Region 11 where 77 is the energy separation between the local conduc-

tion band edge E, (r) from the Fermi level, E, measured in
Region III units ofkT;7 = - (E, - EF)/kT.

At the heterointerfaces, the electronic potential has a dis-

A MetraintrfaCO A W continuity which is given by the conduction band offsets.
These quantities have been the subject of numerous investi-
gations and are available for the various heterojunctions.
Here, we are faced with a more complicated situation in that

Region I W Accumulation the conduction band discontinuities along the interfaces
W i r e may be a function of the distance to the center point. Lacking

Iany model for this spatial dependence, we assume the con-
6duction band offset to be constant along a particular heter-

I_ I ointerface. Concerning the crossing point itself, we assume
B that the sum of the potential energies has to be zero along a

path looping around t..- center point. This implies that the

x potential discontinuities f& th- three heterointerfaces have

FIG. I. A schematic diagram is shown for a geometry of crossing heteroin- to add up to zero. This is consistent with a transitivity prop-
terfaces. Special points along the heterointerfaces and the point of their erty of the conduction band offsets for any given combina-
intersection are indicated. tion of materials.

Of special interest are the electronic states in the vicinity
of the crossing point. We are particularly interested in bound
states which are confined both in the x and y directions.

each other in this structure. Regions I and II could also be Quasi-one-dimensional motion is then only possible in the z
repeated periodically in the fashion of a superlattice which direction. We solve Schrddinger's equation for the potential
would result in an array of parallel wires. Another possibility which we obtain from Poisson's equation.
for realizing this structure might be to utilize a V groove with
its sidewalls at heterointerfaces A and B. In that case, re- _. V2 b(r) + [ V(r) - eO(r) I 0(r) = Etb(r). (2)
gions II and III would be identical, and material I would 2m*
represent the filled-in groove. A structure similar to the lat- Here, V(r) includes external potentials and band offsets and
ter case was realized very recently 6 and it was shown that a 0(r) is the electrostatic potential obtained from Poisson's
quasi-2D electronic system can exist on the sidewalls of the equation.
V groove. Also very recently it was demonstrated that an
optically active quantum wire 7 may be realized at the tip of Ill. NUMERICAL METHOD
a V groove which is overgrown with a quantum well struc-
ture. The determination of the potential distribution and elec-

We will concentrate on the heterointerfaces A and B, tronic states at the crossing heterointerfaces represents a
which are the ones along the intersection of regions I-II and challenging numerical problem since the spatial scales for
I-III, respectively. We want to study conditions for which the two problems are very different. Poisson's equation has
there is no significant accumulation along the heterointer- to be solved on a domain on the order of microns to obtain

faces at locations A and B, i.e., far from the center point, W. accurate potential distributions with the correct asymptotic
At the same time, however, we would like to achieve quasi- behavior. Schr6dinger's equation, however, should yield ac-
one-dimensional accumulation in a region close to the point curate bound electronic states in the vicinity of the center

of intersection, point, with spatial scales on the order of hundreds of Ang-
In the theoretical treatment of this problem, we obtain the stroms. The difference in the size of the domain for the two

potential distribution for the complete two-dimensional spa- equations implies that the Schr6dinger problem has to be
tial domain. Within a Thomas-Fermi screening model, the solved on a subset of the domain used to solve Poisson's

electrostatic potential 4(r) determines the charge distribu- equation.
tion, and therefore the band bending. We solve Poisson's We employ the finite element method for the numerical

equation for the geometry shown in Fig. 1. The effects of the treatment of both the Poisson and Schr6dinger equations.

different materials enter through the background doping Uniform rectangular elements are used with standard first

and the band discontinuities at the heterointerfaces. order Chapeau basis functions. We typically use a mesh size
of 100X 100 nodal points for both equations. The finite ele-

V2 (r) = e [n(r) - N ]. (D) ment method results in a linear system of equations for the
EO unknowns at each nodal point. For our mesh size, we have to

The charge term contains the sum of the electron density and solve problems of order 10 0001 Fortunately, these matrices
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are sparse, and efficient numerical techniques are available
for their solution. TOP VIEW

Poisson's equation is solved on a spatial domain of typical-
ly 6000 X 6000 k which we found to be sufficiently large to
satisfy the boundary condition that the potential asymptoti-
cally approaches its value in the bulk. The boundary condi-
tions fix the potential at the four comers of the rectangular
domain such that the corresponding electron density is equal
to the background doping of that region, simulating charge
neutrality in the bulk. A standard LU (lower and upper
triangular) decomposition method is used to solve the linear
system of equations after it has been reduced to banded sym-
metric form.

Schr6dinger's equation is solved on a spatial domain of
typically 1000X 1000 A surrounding the center point. This
region is sufficiently large to obtain bound states by requir-
ing the wavefunction to be equal to zero at the boundary of
this domain. The potential used as input to Schr6dinger's
equation is a bilinearly interpolated detail around the center
point of the potential obtained from the solution of Poisson's
equation. The resulting eigenvalue problem can be reduced
to banded symmetric form of typical dimension
10 000 X 100. Since we are primarily interested in the bound
electronic states, only the lowest eigenvalues and eigenvec-
tors need to be determined. The Lanczos alogorithm'S is
used for the efficient numerical computation of the lowest W
eigenvalues and eigenvectors.

Most numerical computations are performed on a Convex
C-2. The solution of Poisson's equation typically takes 600s BOTTOM VIEW
of CPU time. The solution of the eigenvalue problem for the Fio. 2. A typical potential landscape is shown from two different viewing
first 10 states typically requires 200 s of CPU time. Compu- angles. The top part shows the top view from an angle of + 80" and the
tations were also performed on a Cray X-MP 48, with execu- bottom part shows the bottom view from an angle of - 10*. Special points

tion times about an order of magnitude faster. are labeled using the same convention as in Fig. I.

IV. RESULTS

We concentrate on the GaAs-Al. Ga, -, As material sys- sidefaces show the familiar potential variation across a he-
tem because of the good lattice match in these heterostruc- terointerface.
tures. The various regions (I, II, and III) in Fig. 1 corre- In order to study accumulation, we choose material Ito be
spond to different Al mole fractions, x,, x31 , and x,,,, and lightly n-type doped GaAs with a doping concentration of
different background doping concentrations, N1, N,, and N = 5 X 10" cm - throughout. We first study the case in
N,,,. We linearly interpolate the relevant material param- which regions II and III are occupied by the same material
eters, like effective masses, dielectric constants, etc. At the
interfaces between regions of different Al content, the poten-
tial energy for electrons will exhibit a discontinuity. For the , ,
values of these conduction band offsets, we use the data giv. 100
en in Ref. 19.

A typical potential landscape is shown in Fig. 2 from two
different viewing angles to display the location of the heter- 0 .
ointerfaces and their point of intersection. The front edge is s"
highlighted in both graphs to aid spatial perception. Using .,0 "
the same convention as adopted in Fig. 1, we label the heter- W

ointerfaces (A, B, and C) and the crossing point (W). The T8300 K

top portion of the figure shows the potential as seen from the •200 C

top at a viewing angle of + 80'. The heterointerfaces with •20 ..
their potential discontinuity are clearly discernible. The bot- I It I I a' i 0, 1 0 ' 0

tom portion of the figure shows the potential as seen from Doping conce.nration N11N111 (,Cm")

below at a viewing angle of - I10. Clearly visible now is the FIG. 3. Shown is the potential variation at selected locations as a function of
dip in the potential at the center point, which provides the the doping concentration in regions 11 and ill. Note that the center point W
quantizing potential "funnel" for the quantum wire. The dips below the Fermi level, which is the zero on the energy scale.

J. Vac. Sl. Technol. 8, Vol. i, No. 4, Jul/Aug IM
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x11= x11 with the same background doping concentrations 200 - .o
= Ni i .In Fig. 3, we show the potential energy for elec- T=3o0 K - A .- O-

trons. as a function of the doping concentration in regions II 1 so x=o.25 - 8 -- b.

and III, at points A, B, and C at the heterointerfaces as well C . --* c "''r
as at the center point, W. A temperature of 300 K is used in . 100 i "1 .

these calculations. The figure shows the value corresponding e
to the lower potential at the respective heterojunction. The 1 - -zero of potential energy is taken to be the Fermi energy for . - .

convenience. Because of the assumed symmetry in regions II ID * " "
and III, the potentials at points A and B are the same. We . 0..
show results for two different mole fractions .
x,, = x... = 0.25 indicated by the solid symbols and solid .5 1
lines, and xn = x,, = 0.35 indicated by the open symbols Doping Concentration Icm3)

and dotted lines. The larger band discontinuity for x = 0.35
lowers the potentials at points W, and A and B. For point C, FiG. S. Shown is the potential variation at selected locations as a function of
the larger effective mass and smaller dielectric constant the doping concentration in region Ill, with N as a parameter. Note that

leads to the slight increase in the values for x = 0.35. Note the center point W dips below the Fermi level, which is the zero on the

that the center point, W, dips below the Fermi energy, indi- energy scale.
cating an accumulation of electrons. Also note that the ener-
gies at the heterojunctions far from the intersection do not
dip down as far as the center point This means that accumu- at the center point, we solve Schr6dinger's equation for
lation in the ID wire starts before 2D accumulation layers promising potential profiles, as just determined. As can be
form. For doping larger than about 5 X 10 "7 cm - in the seen from Fig. 3, the case for a doping concentration
layers 1I and III, the heterointerfaces themselves begin to N = I x 10' cm - looks promising since point W lies below
accumulate electrons. the Fermi energy while the other points have positive poten-

To demonstrate the existence of a confined electronic state tial energies. The top portion of Fig. 4 shows the potential

POTENTIAL POTENTIALPROFL PROFILE :,.:,

BOUND STATE BOUND STATE
FIG. 4. The top part shows the potential landscape for the symmetric case in FIG. 6. The top part shows the potential landscape for the asymmetnc case
which regions II and Ill are assumed identical. The potential dip in the where region Ill contains a spacer layer. The potential dip in the center
center produces a bound electronic state whose wave function is displayed produces a bound electronic state whose wave function is displayed in the
in the lower portion of the figure. For more details refer to the text. lower portion of the figure. For more details refer to the text.
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0 .ment solely provided by the inherent electric fields associat-

bound electronic state in two dimensions.

----" * In our theoretical treatment of the problem we use a semi-
S..classical approach to calculate the amount of charge in the

,.--- -* structure and we then calculate the quantum confined states
I 3O K -- from the resulting potential. A shortcoming of the present

SO x=0.25 -- approach is that it is not self-consistent. In the future, we
0 -intend to extend our numerical treatment to calculate the

. .00,potential and the charge distributions self-consistently. Due
0 0 50 00 000 to the lack of self-consistency, we have also refrained in the

d,,, (Angstfams) present study from reporting the amount of charge residing

FiG. 7. Shown is the potential variation at selected locations as a function of in the structure which depends rather sensitively on the ener-

the width of the spacer layer as described in the text. Note that the center gy levels.
point W dips below the Fermi level. which is the zero on the energy scale. Our proposed structure does not require lithography to

provide lateral confinement, however, it requires the forma-
tion of a lateral interface for regrowth. This interface can be
realized either by polishing or by etching. It is hard to assess

landscape for this case and x = 0.35. Schrddinger's equation the relative merits of these two processing steps for the quali-
is solved for this potential and a bound state is found with an ty of the resulting interface. Likely, both techniques are ef-
energy of 14.3 meV. The corresponding bound state wave fectively equivalent which makes our proposed structure
function is also shown in the bottom part of Fig. 4. The similar in feasibility to the ones proposed in Refs. 4 and 5.
spatial extent of the bound electronic state is about 150 A in The density of the I D gas in our structure is determined by
the direction along the heterointerfaces and about 75 A in the material composition and the doping levels in the differ-
the direction perpendicular to the heterointerfaces. ent regions. We have given results that provide a sample of

For realizations of this structure in which region III is the rather large parameter space for the various combina-
grown epitaxially onto I and II, modulation doping of region tions of material parameters. In its present form, our struc-
III might be desirable. In order to study this case, we now ture is without some sort of gate to control the amount of
subdivide region III into two parts. Next to the heterointer- charge in the wire. Future studies will address the issue of
faces we place a lightly doped "spacer layer" of width dill, gaining control over the Fermi level such that it can be
and the remainder of region III is doped with Ni, as before. moved through the quasi- 1D levels which have been formed.
Figure 5 shows the potentials at the center point and heter- A related issue is the possible transfer between quasi-two-
ointerfaces as a function of the doping concentration N,,. dimensional electrons in the accumulation layers and quasi-
The spacer layer is assumed to have a width of dill = 333 A, one-dimensional electrons in the accumulation wire. Self-
and a doping density equal to N,,, which takes on two differ- consistent solutions to Schrfdinger's and Poisson's
ent values, as shown in the figure. In this case, there is no equations will then be required to investigate these ques-
symmetry between points A and B and the corresponding tions.
potential values are no longer the same. Note that the center
point W again dips below the Fermi energy while the poten- ACKNOWLEDGMENTS
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3 Abstract

We demonstrate that the confinement produced by the internal electric fields
at crossing heterointerfaces is sufficient to produce a bound electronic state in
two dimensions. The potential profiles and electronic states are obtained by
numerically solving the Poisson and Schr6dinger equations using the Finite
Element Method. Ve also investigate the feasibility of parallelizing the calcu-
lations on the local element level by using a cluster of networked workstations
as a distributed computational resource.

3 Introduction

Semiconductor structures with reduced dimensionality have been the sub-
ject of much recent research. These quantum confined systems are expected to
exhibit superior electrical [I] and optical 12] properties as compared to more
conventional semiconductor structures. Various design ideas for systems with
confinement in 2 dimensions and free propagation in the third, so-called quan-
tum wires, have been proposed (4,51. Several evaluations of the electronic states
in quantum wires have been reported in the literature. e.g. [5,6].

Ilere, we present calculations of the electronic states in a novel quantum
wire structure, which we recently proposed (7]. This so-called 'accumulation
wire' is formed at the intersection of two perpendicular accumulation layers.
Electronic confinement is solely provided by the electric fields associated with
the heterointerfaces. WVe study the potential profiles and electronic wavefunc-
tions by solving Poisson's and Schr6dinger's equation. taking into account the
potential discontinuities at the interfaces. The Finite Element .Method (FENI)
is employed for the numerical solution of this set of equations 18].

Our calculations are performed in an environment of networked SUN work-
stations in which network daemons can utilize idle CPU's on the network. These
daemons can also assign computational tasks to available CPU's. Ve investigate
the possibility of speeding up the code by parallelizing the FEM calculations
at the local element level, using the network as a distributed computational
resource.

3 Crossing Heterointerfaces

The model geometry of crossing heterointerfaces is schematically depicted
in Fig. 1. The two - dimensional spatial domain with coordinates (x.y) is
subdivided into three different regions. denoted by I, I. and Ill. In general,

I
I
I



I
I

we then have three different heterointerfaces. denoted by A. B, and C. which
intersect in the center point, %V, where the quantum wire is expected to exist.
The realization of such a structre appears to be within the realm of possibil-
ity, considering recent progress in processing for etching and regrowth (9], and
cleaving and regrowth [10].

Region II

3Region III

A 04"We"I...t. " WI\
Region I *Accumulation

Ri I Wire

3 B

Figure 1: A schematic diagram is shown for a geometry of crossing heterointerfaces.
Special points along the heterointerfaces and their point of intersection are indicated.

In the theoretical treatment of this problem. we obtain the potential distri-
bution for the complete two - dimensional spatial domain. Within a Thomas -
Fermi screening model, the electrostatic potential determines the charge distri-
bution, and consequently the band bending. We solve Poisson's equation taking
into account the respective background doping and the band discontinuities at
the heterointerfaces. Of special interest are the electronic states in the vicinity

of the crossing point which we obtain from solving Schr6dinger's equation. For
bound states which are confined both in the x- and y- directions, quasi one -
dimensional motion is possible in the z- direction.

Numerical Method

We employ the Finite Element Method for the numerical treatment of both
the Poisson and Schrodinger equations. Uniform rectangular elements are used
with standard first order Chapeau basis functions. We typically use a mesh
size of 100 x 100 nodal points for both equations. The Finite Element Method
results in a linear system of equations for the unknowns at each nodal point.

Poisson's equation is solved on a spatial domain of typically 6000 x 6000 A
which we found to be sufficient large to satisfy the Dirichlet boundary condition

*2
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that the potential asymptotically approaches its value in the bulk. The bound-
ary conditions fix the potential at the four corners of the rectangular domain
such that the corresponding electron density is equal to the background doping
of that region, forcing charge neutrality in the bulk. A standard LU decompo-
sition method is used to solve the linear system of equations after it has been
reduced to banded symmetric form. and a Newton-Raphson iteration scheme
implements the nonlinearity due to the Thomas - Fermi screening model.

Schrodinger's equation is solved on a spatial domain of typically 1000 x 1000
surrounding the center point. This region is sufficiently large to obtain bound

states by requiring the wavefunction to be equal to zero at the boundary of this
domain. The potential used as input to Schr6dinger's equation is a bilinearly
interpolated detail around the center point of the potential obtained from the
solution of Poisson's equation. The resulting eigenvalue problem can be reduced
to banded symmetric form of typical dimension 10.000 x 100. Since we are
primarily interested in the bound electronic states, only the lowest eigenvalues
and eigenvectors need to be determined. The subspace iteration technique
is used for the efficient numerical computation of the lowest eigenvalues and3 eigenvectors.

Figure 2: The left part shows the potential landscape for the case in which regions
1I and IlI are assumed identical. The potential dip in the center produces a bound
electronic state whose wavefunction is displayed in the right half of the figure.

In Fig. 2, we show as a result the potential landscape for a GaAs/AIGal-,As
system with mole fraction Xrl = xi = 0.35. Region I is taken to be GaAs
with a doping of N, = i x U": cm- 3 , and regions 1I and III are assumed to

be identical with doping Nl = N,, = I x 10'" cm- 3 . Schr6dinger's equation
is solved for this potential and a bound state is found with an energy of 14.3

I 3I nnrD
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meV relative to the Fermi energy. The corresponding bound state wavefunc-
tion is also shown in Fig. 2. The spatial extent of tile bound electronic state is
about 150 A in the direction along the heterointerfaces and about 75 A in the
direction perpendicular to the heterointerfaces. More details of our calulations
and results can be found in a forthcoming paper 7].

Most numerical computations are performed on a Convex C-2. Tile solution
of Poisson's equation typically takes 600 seconds of CPU time. The solution
of the eigenvalue problem for the first 10 states typically requires 200 seconds
of CPU time. Computations were also performed on a Cray X-MP/48, with
execution times about an order of magnitude faster.

I Distributed Computing

We also explored the possibility of utilizing a cluster of networked worksta-
tions for distributed computing. The main idea is to take advantage of the fact
that in the finite element method all calculation on the local element level are
independent and can be done in parallel. Different machines on the computer
network can work on different parts of the problem at the same time.

We have implemented such an algorithm on a cluster of 30 SUN-4 Sparc
workstations. Remote procedure calls are used to execute the local element
calculations on remote machines. So-called network daemons handle the trans-
fer of information between the individual computers. dispatch assignments, and
manage dynamic network CPU loading. The overall performance depends upon
the number of remote machines utilized, and on the number of elements sent to
a particular remote machine at a given time. Detailed performance measures5 will be given in a separate paper.

Acknowledgements: The authors would like to thank Drs. S. Bandyopad-
hyay, NI. A. lierro, C. S. Lent, W. P6tz. and U. Ravaioli for helpful discussions.
This work was supported. in part. by the Air Force Office of Scientific Re-
search, the Office of Naval Research. and an IBM Faculty Development Award.
Computer time was obtained at NCSA through NCCE.
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In this paper, we discuss the design of semiconductor electrostatic and magnetostatic
Aharonov-Bohm interferometers that could operate at liquid nitrogen temperature. We
find that for elevated temperature operation, one dimensional structures constructed from
quantum wires are invariably the only choice, especially when transport is diffusive
instead of ballistic. We have proposed such a structure which can be fabricated by
present day technology. It may exhibit large conductance modulation in an electric field
at 77 K and is an ideal configuration for "Quantum Interference Transistors" (QUITS)

based on the electrostatic Aharonov-Bohm effect.

Introduction For switching transistor applications, it is important
to design the interferometer in such a way as to obtain
the largest possible conductance modulation at the highest

Semiconductor interferometers based on the magne- possible temperature. The size of the conducace modu-
tostatic and electrostatic Aharonov-Bohm effect have re- lation is critical. It determines the ratio of the maximum
ceived widespread attention in recent years because of ('ON') conductance to the minimum ('OFF') conductance
their potential application in novel transistors with ex- and therefore the seperation between the logic levels in
cellent power-delay product'. Recently, the electrostatic digital circuits. This seperation must be sufficiently large
Aharonov-Bohm effect has been demonstrated in metal- so that the bit error rate (e.g. in digital communications)
lic rings2 leading to an upsurge of interest in this area. is tolerable".
In this paper, we discuss various issues pertaining to the For interferometers that rely on the magnerostatic
device applications of Aharonov-Bohm interferometers at Aharonov-Bohm effect, it is possible, in principle, to make
elevated temperatures. We discuss both magnetostatic and the conductance modulation approach 100 % (or the ra-
electrostatic interferometers but with greater emphasis on tio of maximum to minimum conductance approach infin-
the latter since the electrostatic effect is more pertinent to ity) by making the minimum (OFF) conductance of the
transistor applications, structure almost zero. This can happen under two differ-

The basic stuicture for an Aharonov-Bohm quantum in- ent circumstances4: (I) when transport is perfectly ballis-
terference transistor consists of two conduction paths con- tic, and (2) when both elastic and inelastic scattering are
nected at both ends. Electrons enter at one end and exit at present, but the scattering potentials in the two interfering
the other. The quantum-mechanical phase shifts suffered paths are perfectly "correlated". Perfectly correlated scat-
by an electron in traversing the two paths can be controlled tering gives rise to identical phase shifts in the two paths.
by an external electric or magnetic field (the Aharonov- so that the relanve phase shift between the paths, which
Bohm effect) which controls the interference between the determines the interference, is not affected at all by such
paths and therefore the total conductance. This realizes the scattering. An example of correlated elastic scattering is3 transistor operation, the case of impurity scattering when the impurity concen-

0749-6036/89/020239 + 07 502.00/0 © 1989 Academic Press Limited
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I raton and the impurity configuration (i.e. the locations of (2) the large spread in the transverse momenta which is

the impurities) in the two paths are identica 5 . An exam- present even at 0 K. In one dimensional structures. such
ple of paially correlated inelastic scattering is scattering as "quantum wires", the latter source is absent. In these

due to polar optical phonons which is a dominant inelastic structures, there is only one transverse electronic mode (in

scattering mechanism in most compound semiconductors either transverse direction) and hence the transverse mo-

at moderat field strengths. For this type of scattering, the mentum is unique. It is therefore possible to make the
interaction of electrons is much stronger with long wave- spread in the transit time approach zero in 1-d structures
length phonons than with short wavelength phononse . If by lowering the temperature sufficiently 7 . Consequently,

the phonon wavelength happens to be much longer than a one dimensional structure can, in principle, exhibit -

the center-to-center seperation between the two paths, both 100 % conductance modulation at low enough tempera-
paths are perturbed almost identically by the scattering tures which a two or three dimensional structure can never
event and the relative phase shift between them is not af- do even under the most ideal conditions (ballistic transport

fected at all. Perfect correlation between scattering events and zero temperature)8 .
is of course an unlikely situation, but in general. if the two In the case of diffusive transport, the difference be-
paths are physically very close, there can be significant tween one and poly-dimensional structures is even more

correlation between their scattering potentials, especially pronounced. This is because in diffusive transport, cam-
when the potentials have long range such as those due to ers execute a "random walk" motion due to elastic scat-
weakly screened impurities or long-wavelength phonons. tering and consequently the spread in the transit time in
In any case, it is possible, although not very probable, poly-dimensional structures can be very large. But in I-d

to observe -- 100 % conductance modulation in magne- structures, the spread is still very small since the random
tostatic Aharonov-Bohm interferometers under favorable walk motion is severely restricted. The only permitted ran-
conditions. dom walk in 1-d structures is "backwards and forwards"

The case of electrostatic Aharonov-Bohm interferom- motion (but no "sideways" motion) since all elastic scatter-

eters however is not so fortuitous. It is not necessarily ing events involve a 180* deflection of the electron which
possible to observe a - 100 % conductance modulation corresponds to a reflection. Even this reflection is a highly

in electrostatic interferometers even if transport is ballis- unlikely occurence, especially for high velocity electrons,
tic or all scattering events in the two paths are perfectly since the accompanying momentum change is so large that
correlated. The basic reason for this is that unlike the mag- it can only be caused by the short-range (i.e. large wave-
netostatic Aharonov-Bohm phase shift which depends only vector) components of the scattering potential. As long as

on the magnetic flux enclosed by the interfering paths, the the scattering potential varies smoothly in space (compared
electrostatic phase-shift depends not only on the electro- to the scale of a DeBroglie wavelength), such scattenngs
static potential difference between the paths but also on are practically absent and random walk is essentially pro-
the transit time of electrons through the paths. If there hibited.

is a "spread" in the transit time arising from the fact that The suppression of elastic scattering in 1-d structures

different electrons traversing the structure can have differ- also implies that as long as the length of the structure

ent transit times, then there will be a corresponding spread is shorter than the inelastic mean-free-path, the structure

in the phase-shift even when transport is ballistic or scat- behaves essentially as a ballistic structure (no elastic or

tering events ae perfectly correlated. This will dilute the inelastic scattering). Consequently, just like in the case of

interference effect because of ensemble averaging and re- ballistic transport, the spread in the transit time and phase-

duce the conductance modulation. This deleterious effect shift can be reduced almost to zero by reducing the temper-
of ensemble averaging can be eliminated in magnetostatic ature sufficiently. Based on this, we have recently shown9

inteferoneters since the magnetostatic phase-shift can be that as electrostatic Aharonov-Bohm interferometers. one

made unique for all electrons by making the aspect ratio dimensional structures are vastly superior to two dimen-

of the structure (the ratio of the distance between the paths sional structures in the diffusive regime. This is especially

to the width of the paths) large. For the electrostatic effect true at elevated temperatures. Two dimensional structures

however, the only way to eliminate this deleterious effect cannot exhibit sufficiently good performance for device
is to reduce the spread in the transit time to zero. As we applications at 77 K but one dimensional structures can.
shall see shortly, this can be achieved only if the interfer- Our analysis showed that the maximum temperature of

ing paths are "strictly single-moded electron waveguides", operation for GaAs two-dimensional interferometers (for
i.e. one-dimensional structuzes or quantum wires. reasonably fair performance) is - 26 K and the maximum

In the regime of ballistic transport, the spread in the allowed carrier concentration is - 6.3 x 10'0 cm "-. On
transit time of electrons in two or three dimensional struc- the other hand, one dimensional GaAs structures can, in

tures can arise from two sources: (1) non-zero temperature principle, exhibit excellent performance even at 77 K if3 giving rise to a thermal spread in the electron velocity, and the carrier concentration exceeds 2.5 x 10' cm -1
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There is another advantage with one-dimensional struc-
tures. In order to be able to observe quantum interference GATE
effects, the length of the structure must be shorter than i
the "phase-breaking length". In poly-dimensional struc-
tures, the phase-breaking length is the inelastic diffusion
length' ° which depends on the diffusion coefficient and GD
hence on the amount of elastic scattering in the sample. SOURCE GROOVE DRIN
But in one-dimensional structures since diffusive motion or - ----------

random walk is essentially forbidden, the phase-breaking _ _

length is actually the inelastic mean-free-path rather than
the inelastic diffusion length. This means that the phase-
breaking length is longer in l-d structures (which makes TOP VIEW GATE
the lithography easier) and it is also completely indepen-
dent of the degree of disorder or elastic scattering in the
sample.

In view of the above, it seems that one-dimensional
structures are the best choice for electrostatic Aharonov-
Bohm interferometers, especially in the diffusive regime.
In the next section we present such a one-dimensional - As lGaAs -AIGaAs

I structure. It consists of two closely spaced parallel quan-
tum wires and is derived from a configuration proposed by i-. aAs

Sakaki"l. Such a structure can be fabricated by present-
day technology. Our analysis shows that this structure can i-AIG&As -AIGaAs
exhibit very large (approaching 100% in principle) conduc-
tance modulation in a magnetic field and can also exhibit
quite large conductance modulation in an electric field at
temperatures as high as 77 K.

SI GaAs Substrate,.

Proposed Structure Wires SIDE VIEW

The proposed structure is shown in Fig. 1. It con- . Fig. I. Proposed double quantum wire structure for
sists of a single undoped GaAs quantum well -zndwiched electrostatic Aharonov-Bohm interferometer. The figure
between intrinsic AIGaAs layers. After etching a narrow shows both the top view and the side view.
V-groove through the quantum well by focussed ion beam
milling or electron beam exposure' 2 , a n+ AIGaAs layer is
regrown on the etched surface. These steps can all be per-
formed in ultrahigh vacuum without ever breaking the vac-
uum. The process of "etching and regrowth" is certainly be advantageous to replace the GaAs quantum well with
a difficult step, but it has been demonstrated recently' 3 . an InAs quantum well since then one merely has to grow
Following successful regrowth. two parallel closely-spaced a native oxide on the etched surface of the V-groove to
"quantum wires" will form as accumulation layers in the generate the carriers. This is much easier than effecting
GaAs quantum well if spatial trau,fer of charges from the spatial transfer of charges across the V-groove surface.
n+ AIGaAs layer to the GaAs layer takes place. Even if the Another problem may arise due to electron localization
spatial transfer does not occur, there may still be enough effects. It is important to ensure that the device does not
carriers in the channel generated by positively charged in- operate ir the regime of strong localization. This can be
terface states. The mobility of these carriers will be poor, ensured by making the length of the structure shorter than
but the mobility is not important in this case. The only the localization length.
major problem nay arise due to Fermi level pinning. If The quantum wires formed at the surface of the V-
the Fermi level gets pinned inside the bandgap, the wires groove can be contacted by either Au-Ge alloying or by
will be depleted of carriers. This problem does not arise in Si implantation"8 . The latter is preferable since it creates

InAs systems. There have been reports of inversion layers rather lightly doped contacts and this has an advantage.
I forming under natively-grown oxides on InAst 4 . It may This issue is discussed later in the paper. The eleraostauc
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Here To,. is the amplitude of the total transmission
SOURCE DRAIN through the structure from contact to contact, E is the

electron's energy, F is the temperature and f is the Fermi-
S , '' D Dirac distribution function in the contacts. The problem is

now to calculate Tt,,.
As discussed before, a one-dimensional structure es-

A:- -D sentially acts as a ballistic structure if its length is shorter
4 than the inelastic mean-free-path. Elastic scattenng is sup-

pressed by one-dimensional confinement and inelastic scat-
~tering is absent since the transit time through the structure

is smaller than the inverse of the inelastic scattering rate. In
-_ WIRES that case. the transmission amplitude T,,,., can be found in

SFig. 2. Schematic representation of the structure in Fig. a straightforward manner by using the formalism of ballis-
tic transport, This is done by cascading the three scattering

I showing the incident and reflected electron amplitudes. matrices' 9 representing propagation from the left contact

region to the interfering paths, propagation along the paths.
and propagation from the paths to the right contact. The

potential inducing the ovie i i d first and the last of these scattering matrices (for junctions

between two gate pads (see the top view in Fig. i). A-B and C-D; see Fig. 2) can, in principle, be found
In order for the structure to exhibit a strong interference exactly by matching the wavefunctions and their deriva-

effect, its length must be shorter than the "phase-breaking tives along the junction between the contacts and paths20 .
length" at the operating temperature. As discussed before, However, for simplicity, we will represent these scattering
in quantum wires, this length is the inelastic mean-free- matrices by the Shapiro matrix 21

path which depends on the temperature and carrier con-
centration. The inelastic scattering time in heavily doped
GaAs wires at 4.2 K has been reported to exceed S ps16 so _(-(a + b) v v/7 ( ./ *

that assuming a T-12 dependence of the inelastic scattering B )+  v7  U b BI - (t)
time on temperature' 7, we find that the inelastic mean free B2+ , a i 2"

path at 77 K is larger than 0.3 /im if the carrier concen- where
tration is 106 cm- '. The length of the structure can be w

easily made to be 0.25 tim or shorter with electron beam N = , (/FT -
lithography. Our analysis shows that. in principle, such
a structure can exhibit - 100 % modulation of the con- b = -1v/l + I)
ductance in a magnetic field and - 90 % modulation of
the conductance in an electric field even at liquid nitrogen The amplitudes A and B am defined in Fig. 2. The
temperature. superscript '+' refers to waves traveling from left to right

and '-' refers to waves traveling in the opposite direction.
Analysis In the Shapiro matrix. represents the probability of trans-

mission from the contact into any one path; f = 0.5 cor-
For purposes of analysis, the proposed structure is responds to perfect transmission (no end-reflection). The

schematically represented as shown in Fig. 2. The current Shapiro matrix implicitly assumes that transmission into
I through the structure is given by the Tsu-Esaki formula' s  the two paths from the contact are equal in both magni-

2q tude and phase. The latter condition is more difficult to

h J dE IJTo.j.(E) 2 [f(E, T) - f(E + q, T)j (1) meet in practice, but if the carrier concentration in the con-
tacts is not too large and the channels are physically very

a smal applied b voltage t reduces to close so that the seperation between them is comparable
fdE T,,(E)I to the DeBroglie wavelength in the contacts, then some

-2V J degree of phase coherence in the injection and detection

= IAKT d (E)12 sech) 2  (2) process can be expected22. This consideration makes it

which gives the conductance as necessary to make the V-groove in the proposed structure
very narrow so that the wires am closely spaced and also

S q2 f~2 E - EF have the contacts defined by Si implantation rather than
G 2h' dE ITo,.(E)I1 sech (2A'T" by Au-Ge alloying. The transmission amplitud':s for prop-3 (3) agation from junction B to C are represented by t 2 for

I
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left to right propagation along paths I and 2 and t- 2 for path. The elastic mean-free-path in two-dimensional (dou-
reverse propagation along these paths. For single moded ble quantum well) structures can be quite small, even when
structures, the task of cascading these scattering matrices the wells are modulation-doped, since one of the interfaces
is relatively simple and can be performed analytically to of each well will always be an inverted interface. Fabri-
yield analytical expressions for T,,, 23 in the presence of cation of ballistic structures therefore places extreme de-
an external magnetic or electric field. mands on the lithography. In contrast, for a 1-d structure,

transport does not have to be ballistic; it merely has to be
non-dissipative, i.e. there should not be any inelastic scat-

Magnetostatic Effect tering. Consequently the length has to be mere!,- :..orter

Assuming that the two paths are identical so that in the than the inelastic mean-free-path which can be quite long
absence of any external field t+ 1 = t+2 = t* and t-1 =t-2 at low temperatures. This makes the lithographic delin-
= t-. T, 1 is given by2 3  cation of these structures much easier.

l, I~ "~ -' l-t+uI- 22 1 Electrostatic Effect

= (H + E))T',1 (O. E) 2For the electrostatic effect, Equation (7) is modified
(7) to23

~~T to ta l = + ( l +  e 'lo ) ( l t ' t e lo ) ( l

[I - t+t- il b,- I - t*t-(ae' + b2c,210)] - ab2t+2
t-"C1( I + C12

* 1 (

where 0 is the magnetostatic Aharonov-Bohm phase shift where o is the electrostatic Aharonov-Bohm phase shift
given by given by

0 = (s) e=V-,= V2m +=- IlL (12)
h h_ Ii--

It is to be noted that 0 depends only on the magnetic flux Here r, is the average (harmonic mean) of the transit times
density B and the area A enclosed by the two paths and through the two paths, L is the length of each path and IV is
does not depend on the electron's energy. Consequently. the electrostatic potential difference between the two paths.

substitution of Equation (7) in Equation (3) gives Since o depends explicitly on the transit time and hence
on the electrons energy (unlike in the case of the magneto-

, 1 12 1 f'  d E ' ( 1 static effect), different electrons having different energy (at
2h o, T elevated temperatures) suffer different phase-shifts so that

(9) the electrostic effect does not escape the deleterious effects
of ensemble averaging unlike its magnetostatic counterpart.

where In order to prevent this from happening, the temperature
must be lower than the so-called Thouless temperature TT,,

GOO) [dE jT',, 0jO. E)IJ .rrh2 E - EV where kTTh is equal to the energy seperation between the
h KT E%'T electron modes near the Fermi energy. For a I-d structure.

0 kTTi -" where vF- is the Fermi velocity and L is the

Equation (9) predicts a 100% modulation of the con- length of the structure.
ductance in a magnetic field. The conductance oscillation To examine the conductance modulation in a electric
however is not necessarily sinusoidal since (;((0) depends field, the integral in Equation (3) was performed numen-
on the magnetic field through 0. The non-sinusoidal shape cally and the results are shown in Fig. 3 (at T = 77 K) for
is caused by higher harmonics generated from multiple re- various values of c. Note that e= 0.5 corresponds to perfect
flections of the electron between the contacts. A 100 % transmission from the contact into the paths and f = 0.1
conductance modulation is also possible for a 2-d struc- corresponds to 10 % transmission probabilty. In the calcu-
ture if transport is perfectly ballistic4 or if the scattenng lation, we neglected any dependence of t on the electron's

events in the two interfering paths are perfectly correlated. wave-vector. The carrier concentration was assumed to be
Correlated scattering is difficult to realize in practice and I011 cm- i. the length of the structure was 0.25 Am and
for ballistic transport, the length of the structure has to the material was GaAs. For this structure, the Thouless
be shorter than both the elastic and inelastic mean free temperature is 8 K. For a 1000 Angstroms long structure
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I 1 0 it is only the first half-cycle of the oscillation which is
>0 0.9 important since all that is required is to switch the con-

08 ductance between the ON and OFF states. Consequently
0 7 / =° 0 a 90 % conductance modulation over the first half-cycle
0 M is encouraging. Another interesting feature is the decay
03 of the oscillations with increasing values of the electro-
0.4 03 static potential. This happens because the uncertainty in

I 0.3 1 the phase-shift for a fixed potential V is given by -Ao =
0.2 " I. VArt and this is proportional to the potential itself. At low

Z 0.1 , values of the potential, the uncertainty Ao is small and the

0 3 6 9 12 15 18 2 potential, the uncertainty increases thereby decreasing the

0o3e6t9a12 15 18 conductance modulation.
Potentia' V ( mv I Perhaps the most interesting feature in Fig. 3 is the

e Fig. 3. Conductance vs. potential characteristics for effect of . or the role of multiple reflections. If ( is small
the structure in Fig. 1. The carrier concentration is 106 (large end-reflections), only the first half-cycle of the oscil-

cm - . the length is 0.25 pm, the material is GaAs and the lation is discernible and the later cycles are not2 4 . This will
temperature is 77 K. For this structure, the Thouless tem- make it impossible to detect the presence of the Aharonov-
perature is 8 K. The characteristics are shown for various Bohm oscillations in a direct experiment if the test struc-
values of c ture is not cleverly designed to eliminate such reflections.

An explanation for this role of multiple reflections is the
following. If an electron suffers many reflections back and
forth between the contacts before it exits the structure. its
effective transit time increases 25 . This, in turn. increases

0 , the spread in the transit time thereby increasing the un-
> K 097 7 certainty in the phase-shift for a given potential. As a re-

m!c 0.8 . suit, the interference effect "dies off' much more rapidly
' 07/I07 / 7 /in the presence of multiple reflections. There is another

06 F I harmful effect of multiple reflections. An increase in the

0 5 effective transit time may cause it to exceed the inelastic
u 004 sctteing imeand the interference effect may be sin-

M 03I I/marily destroyed by inelastic scattering. For expenments
02 designed to demonstrate the electrostatic Aharonov-Bohm

" °01 oscillations, it is important to minimize multiple reflec-
0 ,tions. This can be achieved by designing the geometm of

0 30 60 90 120 150 180 210 the structure in such a way that the contacts are "transpar-
Potential V ( mv ) ent" to the electrons. Conventional semiconductor "nng"

Fig. 4. Conductance vs. potential characteristic for the structures that have been used for experiments2 6 are not
sameig.4Cnuct ne at .77 potwenti charactrtion is 4 ideal in this respect. In such structures, the radius of cur-

same sm0 ture1 cm and the length is 1000 Angstroms. In this case vature of the ring may be comparable to the DeBroglie
the Thouless temperature is 77 K which is the ambient wavelength of electrons which will inevitably lead to se-

temperature. vere reflections between the leads27 . The present structure
is much better designed in this respect since there are no
sharp curvatures in the geometry to induce reflections.

In conclusion, we have discussed the relative merits
of one dimensional Aharonov-Bohm interferometers over

with a carrier concentration of 4 x 10 cm- , the Thouless two and three dimensional interferometers in the regime
temperature is about 77 K. For the sake of comparison, of both ballistic and diffusive transport. We have shown
we have also shown the conductance modulation of such that cleverly designed double quantum wire structures with
a stucture in Fig. 4 for c - 0.5. suitable geomemes to minimize multiple reflection effects

Several interesting features are found in Fig. 3. The can exhibit large Aharonov-Bohm interference. We have
conductance modulation (for the first half-cycle) is larger proposed such a structure that can be fabricated by present-
than 90 % at 77K for all values of e. This is promising for day technology. This sructure is especially suited for de-
switching transistor applications. For such applications, vice applications at elevated temperatures (77K).
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Performance of electrostatic Aharonov-Bohm interferometers
in the diffusive regime
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In this letter we discuss the performance of semiconductor electrostatic Aharonov-Bohm
interferometers that operate in the diffusive regime. We find that the performance is primarily
determined by temperature and carrier concentration, and we have identified the conditions
for "fair," "good," and "excellent" performance. Our analysis shows that two-dimensional
interferometers cannot operate at elevated temperatures but one-dimensional interferometers
could operate at 77 K if the carrier concentration is sufficiently high and the structure is
cleverly designed to minimize end reflections.

Semiconductor electrostatic Aharonov-Bohm interfer- electrons, and (2) the large spread in the transverse mo-
ometers have received serious attention in recent years be- menta which is present even at 0 K. In 1-d structures, the
cause of their potential application in novel transistors with latter source is absent (since there is only one transverse
excellent power-delay product.' In this letter we examine the mode), and consequently the spread in the transit time can
performance of these interferometers in the diffusive regime, approach zero at low enough temperatures. As a result, a l-d
i.e., when elastic scattering is present, but phase-randomiz- electrostatic Aharonov-Bohm interferometer can exhibit al-
ing inelastic scattering is absent. In the past, most of the most a 100% conductance modulation at low enough tern-
research dealing with such interferometers has focused on peratures which a 2-d interferometer can never do even at
the ballistic regime where both elastic and inelastic scatter- zero temperature.-
ings are absent. Fabrication of ballistic structures, with di- In the diffusive regime, the difference between l-d and
mensions shorter than the inelastic and elastic mean free 2-d structures is even more pronounced. The spread in the
path, places extreme demands on semiconductor technolo- transit time in 2-d structures can be very large since carriers
gy. The demand is twofold. Firstly, modulation doping is execute a "random walk" motion due to elastic scattering.
required to eliminate in situ impurity scattering. Secondly, But in 1-d structures, the spread is still very small since the
the lithographic demands can be imposing since the elastic "random walk" motion is severely restricted. The only per-
mean free path can be quite small, even in modulation-doped mitted "random walk" in I -d structures is "backwards and
quantum well structures, since one of the interfaces of the forwards" motion (but no "sideways" motion) since elastic
well will always be an inverted interface. Structures meant scattering events involve a 180 deflection of the electron.
for the diffusive regime, on the other hand, are much easier Even this is highly unlikely, especially for high-velocity elec-
to fabricate. Modulation doping is not required and the lith- trons, since the accompanying momentum change is so large

ographic demands are significantly relaxed since the length that it can only be caused by the short-range (i.e., large wave
of the structure has to be merely shorter than the phase- vector) components of the scattering potential. As long as
breaking length which is typically much longer than the elas- the scattering potential in a l-d structure varies smoothly in
tic mean free path at low temperatures. space (compared to the scale of a DeBroglie wavelength)

Recently, the electrostatic Aharonov-Bohm effect has such scatterings are practically absent.
been demonstrated in metallic rings' in which transport is The suppression of elastic scattering and random walk
diffusive. The observed effect was small and indirect since in I -d structures makes the spread in the transit time almost
metallic rings are not ideal for this purpose. They are not zero at low enough temperatures. In the next paragraphs, we
strictly one-dimensional structures (the diameter of the focus on the specific issue of phase randomization due to the

wires is much larger than the DeBroglie wavelength of carri- spread in the transit time and the resultant performance deg-
ers) and this has a deleterious effect. For electrostatic Ahar- radation. We then establish a performance criterion based

onov-Bohm interferometers, one-dimensional structures on this consideration to evaluate various 2-d and 1-d inter-
are best. They are inherently superior to two- or three-di- ferometers in the diffusive regime under different conditions
mensional structures, especially when transport is diffusive of temperature and carrier concentration.
rather than ballistic. This is elucidated below. The electrostatic Aharonov-Bohm phase shift between

The electrostatic Aharonov-Bohm phase shift depends two interfering paths in an interferometer is given by
on the transit time ofelectrons through a structure. If there is (ell) V-,, (1)
a "spread" in the transit time, there will be a corresponding
spread in the phase shift and this will dilute the interference where Vis the potential difference between the paths and r,
effect as a result of ensemble averaging, is the average (harmonic mean) of the transit times through

In the ballistic regime, the spread in the transit time in the two paths. Any spread in the transit time will give rise to
2-d structures can arise from two sources: ( ) nonzero tem- a spread in the phase shift and dilute the interference effect
perature giving rise to a nonzero spread in the velocity of thereby causing the conductance modulation to decrease.
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For switching transistor application, it is necessary to Shockley-Haynes experiment.'
ensure that the conductance of the interferometer is close to
zero at the trough of the first half-cycle of the Aharonov- (Ar,) = 4 /VdDL V, (3)
Bohm oscillations. This in turn requires that when one elec- where D is the diffusion coefficient, Vd is the drift velocity,
tron is interfering destructively corresponding to an Ahar- and L is the length of the structure.
onov-Bohm phase shift 0 = i-, every other electron in the (r,) L/vd. (4)
ensemble also suffers a phase shift close to ir. If the spread in
the phase shift AO is also close to it, then some electrons will Therefore,
interfere constructively while others are interfering destruc- 77 = 4/L 5L -/Iv,. (5)
tively and the effect is washed out. In other words, it is neces-
sary to have AO < ir. For switching transistor applications, it For a low electric field e, Vd= ue where p is the mobility.
is only the first half-cycle of the conductance modulation Also E= Vb, IL, where VI,., is the bias voltage over the
that is important. Therefore, we need to have A4 < ir when structure. This gives

= i'. This is equivalent to the condition that the ratio AI/
< I. We now adopt this ratio as a "performance index" (7) q j( 16/Vb,. ) (D/11A). (6)

and require that for a sufficiently large conductance modula-
tion (peak-to-valley ratio), 7 be less than unity. We then For 2-d interferometers, 7/depends on the bias. The
calculate this dimensionless quantity 17 for 2-d and l-d inter- minimum value of corresponds to the maximum allowedferometers, value for V,. The upper limit on Vb, is the voltage at

which an electron, arriving at one contact from the other,
7 = AO6/ = (A",)I0",), (2) just reaches sufficient energy to cross the threshold for polar

where (Ar, ) is the spread in the transit time and (r,) is the optical phonon emission (strong inelastic scattering).
average transit time for the ensemble. Hence from Eq. (6), invoking the generalized Einstein rela-

For 2-d structures and in the case of diffusive transport, tion for a carrier concentration n,, we get that for a 2-d inter-
(Ar,) can be calculated the same way as is done for the ferometer

1.,. = x (l6k Te,,. ) in{I + exp[ (E, -E) k T ]} + exp[ (E,. )kT]}. (7)

I

where E, is the energy of the lowest electronic subband (the 17= kTE,. (9)
only one presumed to be occupied), EF is the Fermi energy, In contrast to the case of 2-d interferometers, il for I -d inter-
and c,,, is the polar optical phonon energy ( = 36 meV for ferometers does not depend on the bias.
GaAs). Equation (7) gives us the limiting values of tem- In Fig. 2 we show the performance of 1-d interferome-
perature and carrier concentration for which 17,,,, < 1. In
Fig. I we show the performance of 2-d GaAs interferometers
as a function of temperature and carrier concentration. The
performance is considered "fair" if i7,.,. < 1, "good" if 1011
7.,. < 0.5, and "excellent" if 77,,,. < 0. 1. For 2-d interferom-
eters, there is no visible region of "excellent" performance. •
We also find that 2-d interferometers cannot operate at 77 K g 0
which is far outside the range of "fair" performance. In addi-
tion, we find that even for"fair" performance, the maximum .' !/> >/ /
temperature of operation is -26 K (for the lowest carrier
concentration) and the maximum allowed carrier concen-
tration is -6.3x 1010 cm - (at the lowest temperature).
Two-dimensional interferometers are therefore not a judi- d //
cious choice for device application in the diffusive regime.

We now discuss I-d interferometers. In such systems, 104
the only source of a spread in the transit time is the thermal 0 10 20 30
smearing of the electron distribution. Therefore, Temperature ( K)

1 = (A=,)I(,) (AV,)/(v,), (8) E GoodaPemc

where (v,) is the average transit velocity and (Au,) is the Fair Per mance
spread in the electron velocity arising from the thermal
spread in energy. FIG. 1. Performance diagram for two-dimensional GaAs electrostatic

For degenerate carrier concentrations, (v,) = v, (the Aharonov-Bohm interferometers operating in the diffusive regime. Re-
gions of "fair" and "good" performance are shown in the diagram. There is

Fermi velocity) and (Av,) = (l/2)/kT *. Hence, no region o(excellent performance.

2324 Appli. Pft. Let., Vol. 53, No. 23, 5 December IN6S S. Sandyopadhyay ano W. Porod 2324



107 plantation (for GaAs-AlOaAs structures)." In addition, the
contact geometry must also be such that the contacts are
"transparent" to the electrons. Otherwise, an electron will
suffer many reflections back and forth between the contacts
before it finally exits the structure. Multiple reflections have
two deleterious effects. Firstly, since the transit time
through the structure increases proportionately with the

105 number of reflections, the spread in the transit time also in-
creases, which in turn reduces the conductance modulation.

o Secondly, the dwell time of an electron within the structure
increases and this enhances its chances of encountering a

104 L Iphase-randomizing inelastic collision. The geometry of the
0 20 4o 60 80 100 structure is therefore a critical consideration in the design.

Temperature K ) Semiconductor ring structures, which are conventionally

ja Exce Perfrmanc used for experiments,' are a poor design in this respect since

3 Good Perormanos the radius of curvature of the ring is usually comparable to

[ Fair Ped rmane the DeBroglie wavelength of carriers so that multiple reflec-
tions between the leads (contacts) can be severe." Alternate

FIG. 2. Performance diagram for one-dimensional GaAs electrostatic structures that do not have sharp bends and curvatures are
Aharonov-Bohm interferometers operating in the diffusive regime. There possibly a better choice. One such structure has been pro-
are regions of "fair." "good," and "excellent" performance. "Good" to "ex.
cellent" performance can be expected at 77 K for practical carriern posed by us in Ref. 5.
trations of - 10cm'. To summarize, we have shown that well-designed one-

dimensional interferometers have the potential to operate at
liquid-nitrogen temperature. We have also identified the

ters for various temperatures and (degenerate) carrier con- temperatures and carrier concentrations required for var-
centrations. Unlike in the case of2-d interferometers, there is ious levels of performance.
a region of "excellent " performance. We find that one can This work was supported by the Air Force Office of
expect "fair" performance at liquid-nitrogen temperature if Scientific Research under grant No. AFOSR 88-0096.
the carrier concentration exceeds 2.5 X 10' cm- , "good"
performance if it exceeds 5 x 10 cm-,, and "excellent" per-
formance if it exceeds 2.5 X 10' cm- .The performance im-
proves with increasing carrier concentration. However, as
the carrier concentration is increased, electron-electron
scattering (which is an inelastic mechanism) also becomes 'S. Datta, M. R. Melloch, S. Bandyopadhyay, and M. S. Lundstrom. Appl.
more frequent and the inelastic mean free path (the phase- Phys. Lett. 48,487 (1986); S. Bandyopadhyay. S. Datta. and M. R. Mel-
breaking length) becomes shorter which increases the de- loch, Superlatt. Microstnact. 2. 539 (1986); S. Bandyopadhyay, M. R.
mands on lithography. Nevertheless, we have found that a Melloch, S. Datta. B. Das, J. A. Cooper. Jr., and M. S. Lundstrom, Tech-nical Digest of the IEDM. Cat. No. 86CH2381-2. 76 (1986).
0.25-pm-long structure with a carrier concentration of S. Washburn. H. Schmid, D. Kern, and R. A. Webb, Phys. Rev. Lett. 59.
- 10' cm can exhibit > 90% conductance modulation at 1791 (1987).
77 K.' Realization of such structures is well within the capa- 'The maximum conduction modulation for a two-dimensional structure

under ideal ndito is -75% (Ref. i).
bility of present day technology. 'B. G. Streetman, Solid State Electronic Devices (Prentice-Hall, Engle-
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the two interfering paths phase coherently and this is achie- MA. 1987), Chap. II.

vable to some extent if the interfering paths are closely G. Timp. A. M. Chang. J. E. Cunningham, T. Y. Chang, P. Mankiewich.
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DOUBLED FREQUENCY OF THE CONDUCTANCE MINIMA IN

ELECTROSTATIC AHARONOV-BOHM OSCILLATIONS IN

ONE-DIMENSIONAL RINGS'

3 M. Cahay(o), S. Bandyopadhyay(b) and H. L. Grubin (' )

(a)Scientific Research Associates, Inc.

3 Glastonbury, Connecticut 06033

(b)Department of Electrical and Computer Engineering

I University of Notre Dame

Notre Dame, Indiana 46556

We predict the existence of two different sets of conductance minima in the conduc-

,iace oscillation of a one-dimensional ring due to the electrostatic Aharonov-Bohm
effect. The two sets of minima arise from two different conditions and effectIvely
double the frequency of the conductance troughs in the oscillations. This makes the
frequency of the troughs twice that predicted by the Aharonov-Bohm effect. We
discuss the origin of this feature along with the effects of temperature and elastic
scattering. We also compare it with the magnetostatic Aronov-Al'tshuler-Spivak
effect and point out the similarities and differences.

I. INTRODUCTION

IOscillatory conductance due to the electrostatic Aharonov-Bohm effect has
been predicted for a variety of ring structures along with potential device applica-
tions of that effect. In this paper, we point out an intriguing feature in the conduc-
tance oscillation of a one-dimensional ring due to the electrostatic Aharonov-Bohm
effect. Unlike in the magnetostatic effect, the conductance in the electrostatic ef-

fect reaches its minimum under two different conditions which gives rise to two-

'The work at SRA was supported by the Air Force Office of Scientific
Research under contract no. F49620-87-C-0055. The work at Notre Dame
was supported by the same agency under grant no. AFOSR-88-0096 and by
an IBM Faculty Development Award.
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distinct and independent sets of conductance minima in the oscillations. One set of
minima arises from the usual destructive interference of transmitted electrons and

-- the other arises from constructive interference of reflected electrons. The minima
in each individual set recur in the oscillations with the periodicity predicted by the
Aharonov-Bohm effect, but the separation between two adjacent minima (belong-I ing to the two different sets) is smaller than and unrelated to the Aharonov-Bohm
periodicity. In the following Sections, we establish this feature and discuss various
issues related to it.

II. THEORY

The conductance G of a one-dimensional structure in the linear responseI regime is given by the two-probe Landauer or Tsu-Esaki formula [1]

-_eG = 2 dE ITtot(E)12 sech 2( E ()
h Iik T I2kT

where Ttot al(E) is the transmission coefficient of an electron with incident energy
E through the entire structure (i.e. from one contact to the other), T is the
temperature and EF is the Fermi level.

The problem of calculating the conductance G is essentially the problem of
calculating Ttoti. The quantity Ttotal can be found from the overall scattering
matrix for the structure. For a ring structure, the overall scattering matrix is
determined by cascading three scattering matrices (2] representing propagation
from the left lead of the ring to the two interfering paths, propagation along the
paths, and propagation from the paths to the right lead. For simplicity, we will
represent the first and the last of these scattering matrices by the so-called Shapiro
matrix which is defined in Ref. 3.

A. Ballistic Transport
In the case of ballistic transport, cascading the aforementioned three scattering

matrices (according to the prescription of Ref. 2) yields the overall scattering
matrix and the transmission Ttowa0 [1,4] as

([(it + t 2 ) - (b - a)2 t1 t2 (tt' + t2 ')]
t [1 - t1 (a2t,' + b2t2'1][1 - t2 (a2 t2' + b2t1'] - a2b2 t1t 2(t 1' + t 2')

2

(2)
where c, a and b are the elements of the Shapiro matrix 2, and t and r stand
for transmission and reflection amplitudes within the two interfering paths. The
subscripts '1' and '2' identify the corresponding path and the unprimed and primed
quantities are associated with forward and reverse propagauon of the electron.

2 For a definition of these elements, see Ref. 1, 3 or 4.

408



I
I
I

I

In the presence of an external potential V inducing the electrostatic Aharonov-3 Bohm effect, t1, t 2 , tI' and t 2 ' transform according to the following rule [4]:

ti - iei  i i  'P (3)

where the quantities with the "hats" represent the transmission amplitudes in the
absence of the external potential V. and 6 is the electrostatic Aharonov-Bohm
phase-shift between the two paths induced by V and given by

eV (4)h = V < 7t >= h [1+-- E ]

Here < 7, > is the harmonic mean of the transit times through the two paths
which depends on V and the kinetic energy E of the electrons, W is the electron's
effective mass and L is the length of each path.

Using the transformations given by Equation (3) in Equation (2) and assuming
that in the absence of the external potential V the two paths are identical in all

respects (i.e. 'I = i 2 and t;' = t2
' , we obtain

3 Ttota(() et (I + e'O)(1 - (b - a)2jtj' ez)
D(tj, a, b, 0)

where the denominator D is a function of it, a, b and ¢.
We find from the above equation that Ttotaj(4.) vanishes and hence the con-

ductance (see Equation (1)) reaches a minimum whenever

h=(2n+1) r, i.e. when h- [ +T - 1]L=(2n+l),r

I (6)
This gives the usual conductance minima (which we call the primary minima)
associated with destructive interference of transmitted electrons.3 However, we find from Equation (5) that Ttot,(O) also vanishes whenever

(b - a)iite' "' = 1 (7)

3 From the unitarity of the Shapiro matrix (see Ref. 4) it can be shown that b - a
differs from unity only by a constant phase factor, i.e

3 b- a=e' ()

I
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Now since in ballistic transport = L = (where k is the electron's wavevec-
tor in either path in the absence of the external potential V), Equation (7) really
corresponds to the condition

2kL+ 0+2v [ E I + + 2t/= 2mr (9)

Whenever Equation (9) is satisfied, another set of conductance minima should
appear in the oscillations since the numerator of Tto,(0) goes to zero and the
conductance should fall to a minimum unless the denominator of Ttota(0) also
happens to go to zero at the same time. It is easy to see that the denominator of
Ttotal(O) vanishes whenever 0 is an even multiple of 7r. Hence, unless Equation
(9) is satisfied only by those values of 0 that are even multiples of ir (which
requires 2(kIL + v) to be also an even multiple of 7r), the conductance of the
structure should reach a minimum whenever 4 satisfies Equation (9). This gives
rise to an additional set of minima which we call the secondary minima. Actually,
the secondary minima always occur unless 2(k L + v) is an even or an odd
multiple of ir. The latter case is not proved here for the sake of brevity, but is3 proved in Ref. 4.

B. Diffusive Transport
In the case of diffusive transport, Ttotal(O) can again be found from the

prescription of Ref. 2, except that now we have to evaluate it numerically. We
have calculated the conductance G vs. the electrostatic potential V/ for both
ballistic and diffusive transport. The results are displayed in Fig. 1. The secondary
minima are not washed out by elastic scattering in the weak localization regime.
However, they begin to wash out with the onset of strong localization and with
increasing temperature. The effect of temperature has been discussed in Ref. 4.
Note also the interesting feature exhibited by the secondary minima; they become
more and more pronounced in the higher cycles of oscillations (increasing V)unlike the primary minima. This implies that in an experimental situation, even if
the secondary minima cannot be observed in the first few cycles, they could show
up in the later cycles.

III. DISCUSSION
Before concluding this paper, we briefly discuss the origin of the secondary

minima. Equation (9), which predicts the existence of the secondary minima in the
ballistic case, physically represents the condition that an electron reflected around
the ring interferes constructively with itself at its point of entry into the ring. This
minimizes the conductance by maximizing the reflection. Such a phenomenon can
be viewed as some kind of "coherent backscauering", but it is not exactly similar
to the magnetosiatic Aronov-Al'tshuler-Spivak (AAS) effect which also involves
backscattering, but specifically involves interference of two backscauered time-
reversed paths. Conductance modulation due to the interference of time-reversed

I
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Fig. .1. Electrostatic A-B oscillations in a 1-d ring. The length of each path
is 5000 A. The carrier concentration is 1.55 x 106 cm - t and the parameter E =
0.5. The solid curve is for ballistic transport and the broken curve is for diffusive
transport. In the latter case, there are 10 elastic scatterers in each path arbitrarily
located. Strong localization would have set in if there were 33 scatterers in either
path. In both ballistic and diffusive transport, the secondary minima are bleached
out much more rapidly than the primary minima as the temperature is increased.

Ipaths cannot occur in the electrostatic case since the time reversed paths always
interfere constructively and an external electrostatic potential cannot change that3 .
However, in spite of this basic difference, there is undeniably the superficial sim-
ilarity between the two effects in that they both double the frequency of the con-
ductance troughs in the oscillations.
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We predict the existence of two different types of conductance minima, arising from different

interference conditions, in the conductance oscillation of a one-dimensional ring due to the elec-
trostatic Aharonov-Bohm effect. The occurrence of two types of minima doubles the frequency of
the conductance troughs in the oscillations, making it twice that predicted by the Aharonov-Bohm
effect. This feature, which is not inhibited by elastic scattering in the weak-localization regime,
can, however, be observed only at sufficiently low temperatures. At elevated temperatures, one of
the two types of minima is bleached out and the normal Aharonov-Bohm frequency is restored.

In this Rapid Communication, we point out an intrigu- plitudes according to (see Fig. 1)
ing feature in the conductance oscillation of a one-
dimensional ring due to the electrostatic Aharonov-Bohm A - -(a +b) (,fe)* Ge) * A +
effect.' Unlike in the magnetostatic effect, the conduc- B I + a b BI- (2)
tance oscillation of a ring due to the electrostatic effect ex-
hibits two distinct sets of minima arising from two B 2 b* a B 2
different interference conditions. One set of minima is
caused by the usual destructive interference of transmit- where the asterisk denotes complex conjugate.
ted electrons, and the other arises due to the constructive The scattering matrix representing propagation along
interference of an electron traveling completely around the two paths (i.e., across the junction B-C in Fig. ) is
the ring and interfering with itself at its point of entry into given by 4

the ring. In the next paragraphs we establish the ex-BI r,0t'0 B1istence of this feature and discuss various issues related toB
it. BT' 0r 2 0 t2 B 2

For purposes of analysis, we represent a one-dimen- C +  = O r; o Cl- (3)
sional ring structure as shown in Fig. 1. We assume that C+
phase randomization in the two contacts (termed "source" C 0 t2 0 r2 Cf'
and "drain") occur sufficiently far away from the junc- where t and r stand for the transmission and reflection
tions between the contacts and the paths.2 The (two- coefficients within the paths. The subscripts I and 2 iden-
terminal) conductance of the structure, in the linear-respnseregie, s gien y 3tify the corresponding path and the unprimed and primed
response regime, is given by 3  

,quantities are associated with forward and reverse propa-

G- ef dE I Tts1(E) 12sech 2 [E , (1) gation of an electron from the source to the drain.

where Total is the transmission coefficient of an electron SOURCE DRAIN
through the entire structure, E is the kinetic energy of the -i C--
electron, and EF is the Fermi level. --- W

The conductance G depends on the transmission Ttotal. B q
The transmission Trot., can be found from the overall
scattering matrix for the ring structure determined by cas- A- B C D
cading three scattering matrices.4 They represent propa- C
gation from the source to the two paths, propagation
along the paths and propagation from the paths to the
drain, respectively. For simplicity, we represent the first
and the last of these scattering matrices (for junctions FIG. I. Schematic representation of a one-dimensional ring-
A-B and C-D in Fig. I) by the so-called Shapiro matrix5 like structure showing the incident, reflected, and transmitted
which relates the incident, reflected, and transmitted am- electron amplitudes.
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If we assume ballistic transport in the two paths, in which case r, -r2 -ri -r2 -0, then cascading the three scattering
matrices for the three junctions A -B, B-C, and C-D yields the overall scattering matrix and thence the transmission
T. (-D '/A + ) as

Tta M e(t, +t_) - (b-a) 2 tt 2(t; +t2) (4)[I -ti(aatl'l-b 212][1 -t2(a 212,+b2t 1)] -a 2b2t lt2(t I +t2,) 2 "

I

The above equation is a perfectly general expression for lowing rule: 6

the transmission through a ballistic one-dimensional ring. W2 ie/2
It may be pointed out that ballistic transport, although [tl-ie ti-ie I
difficult to achieve, is not totally unexpected in strictly [ t 2 - t2e M/ 2 t - e - i/2J , (5)
one-dimensional semiconductor microstructures at low
enough temperatures since elastic scattering events are where the quantities with carets represent transmission
highly unlikely in one-dimensional structures? The case amplitudes in the absence of any magnetic flux and 0 is
of diffusive transport, when elastic scattering is present, is the magnetostatic Aharonov-Bohm phase shift given by
discussed later. O- (e/h ), 0 being the flux threaded by the ring. Using

Let us now consider the conductance of the ballistic the transformations given by Eq. (5) in Eq. (4) and as-
ring in a magnetic field. In the presence of a magnetic suming that the two arms of the ring are identical in all
flux inducing the magnetostatic Aharonov-Bohm effect, respects so that (in the absence of any flux) ?i -i2 and
t 1, t2, t 1, and t2 in Eq. (4) transform according to the fol- ?l'-t2', we get

Ttote(0) - [ ae'J(l + e -8)1I - (b -a 2  ' + (6)T2o 2lO 2 2(6)j,2M2 i/)
[l - 'lt;(a2+ b 2e -'8)] [1 - ti; (a 2+ b 2ei)] - a 2b I 2 ; (e o + e -02

The numerator in Ttot1(O) goes to zero and hence the that if the ring's parameters (wave vector and length) are
conluctance of the ring [see Eq. (1)1 reaches a minimum 7  such that Eq. (9) is satisfied (which actually implies that
whenever the ring is "Fabry-Perot resonant" at zero magnetic flux),

then I Ttotal(O) I "nS.HA/,, where the 5 is a Kr6nicker 6.
0 - (2n + I )x. (7) In that case, at a temperature of 0 K, the magnetoconduc-

hg tance G(O) of the ring will appear as a series of "spikes"
This gives the usual conductance minima in the magnetos- occurring at 0-nh/e; the spikes, however, will broaden
ratic Aharonov-Bohm oscillations associated with destruc- with increasing temperature.
tive interference of transmitted electrons. Note, however, In the case of the electrostatic effect, the transforma-
that the numerator in Ttota(0) also becomes identically tions in Eq. (5) are replaced by
zero (independent. of the magnetic flux) if the following
condition is satisfied, ti-t tI"it (

(b-a)2j: . -1. (8) It 2- ile' t- i;e'' (10)

It can be shown from the required unitarity of the where 0 is the electrostatic Aharonov-Bohm phase shift

Shapiro matrix that the quantity b-a differs from unity between the two paths given by
by a constant phase factor, i.e., b-a eJ". Also, in ballis- e/2 ]
tic transport, t1 -I1 me'k" (where L is the length of each -V(r,)- hE I L I I
path and k is the electron's wave vector in either path at 1 I (
zero magnetic flux). Therefore, Eq. (8) really corre- Here (r,) is the harmonic mean of the transit times
sponds to the condition, through the two paths which depends on the incident ener-

2kL+2v-2nx. (9) gy E of the electrons and also the potential difference V
between the paths. 8

It appears that if condition (9) is satisfied [in which The difference between the transformations in Eqs. (5)
case the numerator in Ttotai(0) remains identically zero and (10) accrue from the fact that the magnetostatic
independent of 01, the conductance of the ring should al- Aharonov-Bohm phase shifts suffered by an electron in
ways remain at its minimum, regardless of the magnetic traveling along opposite directions (time-reversed paths)
flux. However, that is not quite true since the denomina- have opposite signs, whereas the electrostatic phase shifts
tor in Ttotai(0) could also become zero at some values of will have the same sign. This is an important distinction
the magnetic flux. It is easy to see that the denominator which ultimately causes two different sets of minima to
does vanish whenever 0-82nz or 0-nh/e (n -0 or an in- appear in the electrostatic effect but not in the magnetos-
teger) in which case, application of L'Hospital's rule tatic effect. Is is also this difference that precludes the ex-
shows that I Tto, (0-nh/e) I - 1. It is interesting to note istence of an electrostatic analog of the magnetostatic
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Aronov-Ai'tshuler-Spivak effect.
Using the transformations given by Eq. (10) in Eq. (4), we obtain (for the electrostatic case),

e- (I +e'O)[l - (b-a) 2 i;e' ]  
(12)

[I - 1i; (a 2+b 2e*)][l -ii(ae 2e'+b 2ei)] -a 2b 2;0 +ei)"

The numerator of Ttotai(0) vanishes and the conduc- This difference becomes an even multiple of 'r (or,
tance reaches a minimuma whenever equivalently zero) if 2(kL + v) is an odd multiple of r,

0 -(2n+lOxi.e., if the ring happens to be Fabry-Pirot antiresonant at

V-0. In that case, the primary and secondary minima

or (13) will overlap and remain indistinguishable. Barring this

(f2 11/2 case, and the case of the ring being Fabry-Pirot resonant

_I"L - (2n + at V-0, both types of minima will not only occur in the

1 -E - l . oscillations, but also remain distinguishable.
It is clear that the appearance of two different sets of

This gives the usual conductance minima (which we minima doubles the frequency of the conductance troughs
call the primary minima) associated with destructive in- in the oscillstions. It is interesting to examine whether
terference of transmitted electrons. Note, however, that this can ever give rise to exactly half-periodic (hi2e) os-
the numerator of Ttota(€) also vanishes if cillations. For this to happen, the secondary minima must

(b-a)2 ji;el-1 (14) occur when o-2mxr since the primary minima always

occur when 0-(2n+1);r. But the secondary minima

In ballistic transport, this corresponds to the condition cannot occur when 0-2mx since [from Eq. (15)] that

r - 1/2 would require 2(kL + v) to be an even multiple of x in
v 2m +E eV which case the secondary minima do not even appear.

2 +L E I 2 . Hence, exactly half-periodic oscillations can never arise

from this effect in ballistic transport.
(15) We now examine the effect of nonzero temperature on

* It is obvious that whenever condition (15) is satisfied, the two types of minima. Nonzero temperature gives rise

the numerator of Ttota(o) goes to zero and the conduc- to a thermal spread in the electron's energy which results

* tance should fall to a minimum unless the denominator of in a bleaching out of the conductance minima due to en-

0Ttouj(o) also happens to go to zero at the same time. The semble averaging over the electron's energy. The primary

denominator vanishes whenever 0-2nx. Hence, unless minima are bleached out when the spread in the quantity

Eq. (15) is satisfied only by those values of 0 that are even on the left-hand side of Eq. (1) (due to a spread in the

multiples of r (which requires 2kL + v to be an even mul- electron's energy) exceeds x and the secondary minima

tiple of x or the ring to be Fabry-Pirot resonant at V-0), are bleached out when the spread ti- the quantity on the

the cond-,ctance of the ring should reach a "ninimum left-hand side of Eq. (15) exceeds ;. These two spreads

whenever 0 satisfies Eq. (15). This gives rise to an addi- are

tional set of minima which we call the secondary minima. [ 1/2 1 11
The physical origin of the secondary minima is the follow- ApILry [ L k T.
ing: Eq. (15) represents the condition that an electron, 2h l .E+eV

entering one of the paths from the left contact, gets (17)
reflected into the other path at the right contact, travels
full circle around the ring and interferes constructively m*1/2 I kT
with itself at its point of entry at the left contact. This Asecondary 2 L + +--e

maximizes the reflection and hence minimizes the kh I r eV

transmission and conductance. This phenomenon could where kT is the thermal spread in the energy.
also cause a secondary set of minima to appear in the From Eq. (17), we can find two critical temperatures
magnetostatic oscillations, but there the conditions for the Trm E. and T w eya above which the primary minima
occurrence of the primary and secondary minima are ex- and the secondary minima, respectively, are bleached out.

. actly identical (they occur at exactly the same value of the These two temperatures are estimated by equating Aptmary

magnetic flux), so that they are always indistinguishable, and A,.n,dry to r which gives (assuming the electron en-
But in the electrostatic case, the two conditions are ergy E to be the Fermi energy EF)
different so that the two minima are distinguishable. I

Let us now establish the requirements for the distingui- z l ft I 1, (18)

shability. For this, we first find the difference between the kprimary - -

phase shifts that give rise to the primary and secondary

minima. From Eqs. (13) and (15), and

Oprimar-Ocondary-m(2n+l);r-(2mnr-2kL -2v). kTosecondary Li- "h/EF+ e V 1 (19)

(16)
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where Vp is the potential at which the first primary 1 2 r. o 2mK 2 T sK
minimum occurs and V, is the potential at which the first _
secondary minimum occurs in the oscillations. - -

Note that both Tprtm,,y and Tsondary increase with in- [1
creasing EF or carrier concentration and decrease with in- H
creasing length of the structure. It is therefore necessary I
to have short structures with high-carrier concentration in 00 .0
order to observe both minima at sufficiently high tempera- 0 7 o 0 0 70

tures.

In Fig. 2, we show the effect of temperature on both T..10KT7K

types of minima in the oscillations. While the primary
minima can persist up to rather high temperatures, the /
secondary minima bleach out at much lower temperatures ,
since [as we can see from Eqs. (18) and (19) Tsecondlry (5

<Trimary. This means that in an experimental situation,
raising the temperature will gradually wash out the secon- 0 0o°  0 °nV 70

dary minima and the oscillations will gradually revert to v 7mv) 70

the normal Aharonov-Bohm oscillations with only the pri- FIG. 2. The electrostatic Aharonov-Bohm conductance oscil-
mary minima visible at higher temperatures. lations in a "ballistic ring" made oC GaAs showing both types of

Finally, another interesting feature, which is clearly minima. Each type of minima recur with the usual Aharonov-
visible in the oscillations, is that the primary minima tend Bohm periodicity, but the separation between two adjacent

to bleach out more and more in the higher cycles of the os- minima (belonging to the two different types) is smaller than
cillations whereas the secondary minima exhibit the oppo- and unrelated to the Aharonov-Bohm periodicity. Note that the

site behavior. This allows one to distinguish between the secondary minima are bleached out at much lower temperatures
two types of minima in experimental data. It is a very in- than the primary. These curves were obtained by performing
teresting behavior and is easily understood from Bi. (17) the integral in Eq. (I) numerically. The parameters for the ring

which shows that at a given temperature, Aprimary in- were carrier concentration equals 1.55x 106 cm, path length
creases with increasing V while A.fd.,y actually de- equals 1000 A, e0.5, and v0.
creases with increasing V. The significance of this is that
at elevated temperatures, even if the secondary minima in realistic semiconductor structures at sufficiently low
are not visible in the first few cycles of the oscillations, temperatures.
they could eventually show up in the later cycles. In conclusion, we have established the existence of a

Before concluding this Rapid Communication, we hitherto unsuspected feature in the conductance oscilla-
briefly discuss the effect of elastic scattering. We have tion of a one-dimensional ring due to the electrostatic
carried out an analysis in the presence of elastic scattering Aharonov-Bohm effect. We have identified the origin of
following Ref. 4 and found that elastic scattering does .iot this feature and discussed the conditions for its observabil-
inhibit the twin-minima feature in the weak localization
regime as long as the temperature is well below T nday.
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We describe a novel quantum-interference phenomenon that gives rise to fluctuations in the opti-
cal spectra of disordered microstructures when the inelastic scattering time in the structures exceeds
the radiative recombination lifetime. The origin of this phenomenon lies in the fact that an electron
or hole, forming an optical dipole, does not lose its phase memory in the absence of inelastic scatter-
ing. Consequently, when the dominant relaxation process for the optical dipole moment is elastic
impurity scattering, the optical spectra of disordered samples depend sensitively on the phase rela-
tionships between the various electron (hole) states in the system due to quantum interference.
Since these phase relationships themselves depend on the exact locations of the impurities (scatter-
ing centers) within the structure, the optical spectra will also depend on the precise details of the
impurity "configuration" inside the structure. In addition, if the phase relationships are altered
with an external field which perturbs the states, the optical spectrum will exhibit sample-specific
fluctuations. In many ways, this phenomenon is an optical analog of "universal conductance fluc-
tuations" and indeed has the same physical origin. An important consequence of this phenomenon
is that in a superlattice structure, each quantum well will have a slightly different optical spectrum
if they merely have different impurity configurations but are otherwise identical. Consequently, this
phenomenon will induce a unique type of inhomogeneous broadening in such a structure. This inho-
mogeneous broadening can be quite large and at low enough temperatures can even be the dominant
cause of linewidth broadening.

I. INTRODUCTION Bohm phase shift between the various electron trajec-

tories. If the field is scanned, the interference conditions
It is now well established that elastic scattering pro- between the trajectories change causing the conductance

cesses, such as impurity scattering, do not destroy the to fluctuate. These aperiodic fluctuations are "sample-
phase memory of electrons, unlike inelastic scattering.' specific" since the impurity configuration is sample
Recent observations of the Aronov-Al'tshuler-Spivak specific, but the rms value of the fluctuations has a
effect, 2 the Aharonov-Bohm effect, 3 and universal con- universal magnitude. This is the essence of universal con-
ductance fluctuations 4 in disordered mesoscopic struc- ductance fluctuations.
tures (with sample dimensions shorter than the inelastic In this paper, the primary objective is to study an opti-
diffusion length) bear ample testimony to this fact. A cal analog of the above transport phenomenon. Elastic
striking consequence of this phase-memory conservation intraband relaxation processes do not destroy the phase
in impurity scattering is that certain macroscopic proper- memory of an electron or a hole forming an optical di-
ties of a disordered sample, such as the conductance, can pole. Consequently the decay of the electron and hole
depend sensitively on certain microscopic features, such states in the presence of impurity scattering is influenced
as the exact locations of the impurities within the sam- by quantum-interference effects. In particular, since the
pIe. 5 If the impurity configuration inside a sample is al- impurity configuration determines the phase relationships
tered while keeping the total number of impurities the between the various states that the electron and hole are
same, the conductance of the sample also changes. This coupled to by the impurity interaction, the configuration
is purely a quantum-mechanical effect and arises from the plays an important role in determining the exact nature
fact that the conductance depends on the superposition of the decay processes for the electronic and hole states
of the transmission amplitudes of various Feynman paths and therefore the optical dipole. The precise details of
inside the sample. Since elastic scattering does not des- how the optical dipole moment decays with time deter-
troy the phase memory of electrons, the interference mines several features of the optical spectrum. Conse-
terms in the superposition do not ensemble average to quently, any influence of the impurity configuration on
zero. Consequently, changing the impurity configuration this decay process is manifested in the optical spectra. In
(which alters the phase relationships between the various other words, the optical spectrum is influenced by the im-
Feynman paths) changes the conductance. A convenient purity configuration.
way of demonstrating this phenomenon is to use an exter- In order to study this phenomenon, we have developed
nal magnetic field to introduce an additional Aharonov- a simple quantum-mechanical model to calculate the
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damping of an optical dipole moment with time in the . mx nm (3
presence of impurity scattering. The formalism is based =p-----sm f sin Mn , (3)

on coupled-mode theory and is derived directly from the W 1
Schr6dinger equation. We first compute the time evolu- where W is the lateral dimension of the quantizing
tion of an electronic state and a hole state that form an (square) box. Each basis state is labeled by two indices m

optical dipole by solving a set of coupled-mode equations. and n corresponding to the two-dimensional subbands in

From this, we obtain the damping characteristics of the the two-dimensional quantum box.

dipole moment. The impurity coordinates appear explic- Substitution of Eq. (2) into (1) yields the matrix equa-
itly in the Hamiltonian for the system and affect the de- tion which gives the time evolution of the amplitude cp(t)
cay characteristics directly. Inelastic processes are ex-
cluded from the model based on the premise that at low of any state
enough temperatures, the inelastic scattering time (for 8[c(t)] t(4)

=1f Y 0 [c(t)]+YI'[c(t)1 4
both electrons and holes) can exceed the radiative recom- at
bination lifetime of a photogenerated electron-hole pair.
Hence a typical pair may not experience a single inelastic
collision during its lifetime. For instance, the inelastic amplitudes of the various states in the quantum box at

scattering time for electrons in GaAs may exceed I nsec time t, I 0 is the unperturbed Hamiltonian (a diagonal
at temperatures lower than 100 mK (Ref. 6) whcreas the matrix whose elements are the kinetic energies of the

radiative recombination lifetime for typical carrier con- basis states), and YP is the impurity interaction Hamil-

centrations in GaAs is - I nsec. From the decay charac- tonian whose matrix elements are given by

teristics of the optical dipole moment, the photolumines- H' - ,I (op I (r-r) I ) (5)
cence line shape is calculated and compared for varying Hq 41rE
impurity configurations.

In Sec. II, we describe the theoretical model. In Sec. r is the strength of the interaction, and r, is the two-
III we show how the amplitudes of an electronic state dimensional coordinate of the ith impurity. The summa-
and a light- or heavy-hole state in a disordered two- tion is carried out over the coordinates of all the impuri-
dimensional quantum box decay with time due to impuri- ties in the quantum box.
ty scattering. We also show how the decay characteris- For the scattering potential, we use a "delta potential"
tics are influenced by the precise details of the impurity rather than the screened Coulomb potential so as to be
configuration. We then show the influence of the impuri- able to obtain an analytical expression for the matrix ele-
ty .onfiguration on the decay characteristics of the opti- ments of Vf'. The choice of 8 scatterers makes impurity
cal dipole moments themselves. In Sec. IV we show the scattering isotropic, but does not change the essential
photoluminescence spectra for both electron-light-hole physics. The interference between the scattered ampli-
transitions and electron-heavy-hole transitions and how tudes enters through the summation over the impurity
each is affected by the details of the impurity coordinates. This underscores the importance of the im-
configuration. Finally, in Sec. V, we discuss the analogy purity "configuration," since the exact locations of the
between the optical fluctuations and the universal con- impurities, appearing explicitly in the Hamiltonian,
ductance fluctuations, and present the conclusions, determine the phase relationships between the various

O's. The present formalism, which deals directly with the

II. THEORY scattered amplitudes rather than with the scattering
probabilities, is different from the semiclassical formalism

We start from the single-particle effective-mass based on "Fermi's golden rule," which deals only with

Schr6dinger equation for a two-dimensional quantum the probability of scattering so that all interference effects

box, between the scattered amplitudes are inevitably masked.
Consequently, in the semiclassical formalism, it is only

? -the net impurity concentration or the total number of im-

at 2m* " ' purities inside a sample that is important in determining
any physical parameter; the precise details of the

where V2 is the two-dimensional Laplacian and H' is the configuration are irrelevant. However, in a quantum-
impurity interaction Hamiltonian which is time indepen- mechanical treatment, one must take the impurity coor-

dent (elastic scattering). dinates explicitly into account since they affect the in-

The wave function 4' is expanded in a complete ortho- terference between the scattered amplitudes which in

normal set turn can affect certain macroscopic properties of a sam-
ple.

c" wtp , (2) Equation (4) has the solution

[c(:) I= exp [6)(6)
where the d4's are the so-called "normal modes" of the
system which are the solutions of the Schr6dinger equa-
tion in the absence of impurity interaction. These are where i=9 0 +"W'. It may be noted that since Yf is Her-
therefore the "particle-in-a-box" states given by mitian, exp( -if//t/h) is always unitary, as it must be, in
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order to conserve probability. Equation (4) is a set of 1000
"coupled-mode equations" which are inherently reversi- am "

ble. Since no inelastic processes are operative, there is no a "

dissipation and consequently the system described by Eq. " .
(4) is reversible. As a result of this reversibility, the com- •
plex amplitude of any state (both the magnitude and - • .
phase) is completely deterministic at any time and can be z
found from Eq. (6). Specifically, since the phase is deter- - 500
ministic at all times, phase memory is never lost. More- • •
over, since Kf' depends explicitly on the impurity coordi- a. "
nates ri [see Eq. (5)], the impurity configuration will have
a direct effect on both the magnitude and phase of any
state at any given time.. ..

Equations (l)-(6) are valid for both electrons and 0 , I
holes. The amplitude of any conduction-band state or 0 500 1000
valence-band state in the presence of impurity scattering POSITION (A)
can be found from Eq. (6). The time-dependent optical FIG. 1. A 100X i000A- quantum box showing a typical
dipole moment P(t) associated with transitions between random configuration of impurities.
two quantum states in the valence and conduction bands
of a semiconductor is given by

P(t)---P(O) c (t)cA (t)±c.c. , (7) and it is very difficult to simultaneously conserve both

momentum and energy in even multiple phonon process-
where ce and ch are the complex amplitudes of an elec- es. In addition, radiative transitions between the subband
tron and a hole state. Therefore, the damping of the opti- states within the conduction band or between the sub-
cal dipole moment P(t) can also be calculated from Eq. band states within the valence band are also forbidden be-
(6). The optical line shape c( ), representing the homo- cause of the orthogonality of the envelope wave functions
geneous broadening, is obtained in a straightforward of the subband states. In other words, all intraband in-
manner by Fourier transforming the time-dependent di- elastic processes that could cause the initial electron or
pole moment P(t) into the frequency domain o of the in- hole state to decay are weak and negligible compared to
cident photons.7 (o) is thus also affected by the impuri- elastic interactions at low enough temperatures.
ty configuration, insofar as the damping of P(t) is The initial heavy-hole state is also chosen to be the
influenced by the configuration. state 13,3) since the only radiative transitions between

conduction-band states and valence-band states that are
III. DECAY OF THE OPTICAL allowed are those between subbands with identical in-

DIPOLE MOMENT WITH TIME dices. The initial heavy-hole state thus has an energy 1.5
meV below the valence-band edge. Similarly, the light-

In this section we first show how an electronic state hole state is also chosen to be the state 1 3, 3 ) which has
and a hole state decay with time in the presence of elastic an energy 8.2 meV below the valence-band edge. It may
impurity scattering. We choose a two-dimensional GaAs be noted that for a given resonant photon energy, either
quantum box of area 1000X 1000 A2 which can be fabri- only a heavy-hole transition or a light-hole transition is
cated by electron-beam lithography.8 The impurity con- involved (but not both) since quantum confinement lifts
centration is chosen to be 5 x 1011 cm- 2 so that there are the degeneracy between the heavy- and light-hole bands.
50 impurities in the box. The impurity configuration is In an actual experimental situation, however, the
generated by two independent uniform random-number choice of the initial electron and hole states will be
generators that determine the x and y coordinates. A governed by the energy of the incident photons. Since
typical impurity configuration is shown in Fig. I. The there are only discrete levels (and no continuum states) in
various parameters are chosen as r=333 A (for both a true "quantum dot" with infinite barriers, photoexcita-
electrons and holes), me, -=0.067m0 , m H*=0.45m 0  tion or absorption can occur only at discrete frequencies
(heavy holes), m H =0.082m0  (light holes), and corresponding to discrete energy separations between the
E = 12.9E0 . electron and hole subbands. In fact, by tuning the excita-

The initial photoexcited state for the electron is taken tion frequency, one can select either a specific heavy-hole
to be the state I m,n ) _ 13,3). This state has an energy transition or a specific light-hole transition. Assuming
10 meV above the conduction-band edge so that both the band gap of GaAs to be 1.42 eV, the present choice of
spontaneous and stimulated polar-optical-phonon emis- initial states for the heavy-hole transition corresponds to
sion from this state are inhibited. Other inelastic mecha- a photon energy of about 1.4315 eV, and for the light-
nisms (such as carrier-carrier scattering, optical-phonon hole transition it corresponds to a photon energy of
absorption, and acoustic-phonon interactions) can be 1.4382 eV. We have neglected any strain-induced effects.
suppressed by lowering the temperature sufficiently. In a A very intriguing question at this point is whether the
quantum dot, the phonon interactions are weak since initial state 13,3), which is not degenerate in energy with
quantum confinement gives rise to only discrete states any other state in the system, can decay at all in the ab-
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sence of inelastic scattering. The only way this state can 1.00
decay is if the electron gets coupled to other electronic
states in the quantum box (not at the same energy)
through elastic coupling. Alternately, one may ask if
there can be any homogeneous broadening of the optical0.75

spectrum in the absence of inelastic scattering. Any a:
homogeneous broadening or nonzero electronic linewidth
indicates that the electron has either gained or lost ener- U 0.50 ,
gy after it was excited to the conduction band, which it
apparently cannot do without inelastic scattering events. a
The same is true of holes. Indeed in the semiclassical pic-
ture, elastic scattering cannot couple an electron between C0. \
states that are not isoenergetic so that an electron cannot .
gain or lose energy through elastic scattering. In the \
Fermi's-golden-rule formalism, this is ensured by the 0.0 "' .

energy-conserving 6 function which, however, is inexact 0.0 0.55 1.10 1.65 2.20

for short time scales because of the uncertainty principle. TIME (1012 sec)

In a strictly quantum-mechanical formalism, coupling be- (a)
tween nondegenerate states is allowed for sufficiently
strong elastic interaction, although it is always much 1.00
weaker than coupling between degenerate states. Indeed
in the coupled-mode formalism that we have adopted,
this is a well-known fact in the context of integrated op- (n 0.75
tics.9 For instance, it is possible to couple light from one I
optical waveguide to another even if the two waveguides
have slightly different characteristic frequencies. By the ,-"
same token, an electron can be coupled to a higher or o.so
lower energy state for short times by sufficiently strong L,
elastic coupling, thereby causing homogeneous broaden- '" \

ing. The efficiency of this coupling, however, decreases \ /\rapidly with increasing energy separation between the -0.25 - - I"

states. 'J ,
To illustrate this particular point, we have purposely

chosen the initial state as the state 13,3). We have in- 0.0_
cluded 64 states in the calculation (m = 1,2,3,. .. , 8 and 0.0 0.55 1.10 1.65 2.20

n = 1,2,3 ... ,8) for both electrons and holes. In Fig. 2 TIME (10-" sec)

we show how the initial electron and hole states decay (b)
with time. The two curves (solid and dashed lines) are for
two different impurity configurations. These curves were 1.00
obtained directly from Eq. (6). The initial states decay as
the electron or hole is coupled away to other electron or
hole states in the system. To illustrate this further, we 0
show in Figs. 3(a) and 3(b) the real and imaginary parts of - .

the electron "density matrix" at time t=275 fs. The elec-
tron density matrix in reciprocal space (momentum rep- ,
resentation) is defined as X1 0.50 "

ppq(t)=c;,()cW(t) (8) 6 -

where c. and cq are the amplitudes of any two electronic 0.25 ,
states. he

In the labeling scheme that we have adopted, the index
p used to label a state is chosen such that the state 11,1) 0.0
(m= I, n= 1) has the index p = 1, the state 11,2) has the 0.0 0.55 1.10 1.65 2.20
index p=2... , the state 12,1 ) has the index p=9 . TIME (10-2 c)
The initial state 13,3 ) therefore corresponds to p= 19. In
Fig. 3(a), the dominant peak appears at p = 19, q = 19 (i.e., (e)

Pig, I is the largest element in the density matrix) which FIG. 2. Decay of the amplitudes of the initial (a) electron
shows that the initial state is still the dominant state. state, (b) the light-hole state, and (c) the heavy-hole state with
Nevertheless states that are close to the initial state in en- time due to impurity scattering. The impurity concentration is
ergy have developed quite large amplitudes which indi- 5 x 1 I cm -. The solid and dashed curves are for two different
cates that the electron has been significantly coupled to impurity configurations.
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FIG. 3. The (a) real and (b) imaginary part of the electron
density matrix p in momentum space at time t=275 fs FIG. 4. The (a) real and (b) imaginary part of' the

electron-light-hole joint density mari pLH at time t- 275 Cs.

these states. This demonstrates the fact that in the pres- a given time. This also implies that a heavy-hole state
ence of sufficiently strong elastic interaction, significant will damp much more rapidly than a light-hole state in
coupling may occur even between states that are nonde- the presence of elastic scattering which is clearly seen in
generate in energy. However, states that are farther from Figs. 2(b) and 2(c). Hence, an optical transition involving
the initial state in energy have correspondingly smaller a heavy hole will have a shorter associated 72 time in this
amplitudes since coupling to these states is much weaker. case than a transition involving a light hole.
For instance, the state 18,8 ) (p-- 6 4 , q=64) is the state
with the highest energy which has an energy 61 meV
above the energy of the initial state. Consequently theelement p6.6 is almost zero since very little coupling can O.12..4 i

I take place between this state and the initial state. (This -

also shows that 64 was a sufficient number of states to in- 3 0.04

clude in the calculation since states lying above the 64th ."

- 0.04 6

state in energy are barely coupled to the initial state for -0
this interaction strength.) 46

31 31

In Figs. 4 and 5 we also show the real and imaginary -0.2 o t , electron
parts of the electron-hole joint density matrices for both
light and heavy holes. The joint density matrix is defined

as (0)
p ( )

hee sa liht-osraavy-he stat tadt is n telec- 0 gie ie12 saloipistaahayhltt
trnco saiete. srn lsi neatosinfcn ildm uhmr apdyta ih-oesaei

There is an obvious difference between Fig. 4(a) and t e 0.04

Fig. 5(a). Comparing the two, it is found that a muchlarger fraction of the elements are significantly large for E -0.04 .al

the electron-heavy-hole joint density matrix than for the . 4

electron-light-hole joint density matrix. This is due to -0.12- q t6t
the fact that since the heavy holes have a larger effective I
mass, the heavy-hole subbands are spaced much closer in
energy than the light-hole subbands so that elastic cou- (b)
pling between the heavy-hole states is much more
efficient. Consequently, a much larger fraction of the FIG. 5. The (a) real and (b) imaginary part of the
heavy-hole states will acquire significant amplitudes after electron-heavy-hole joint density matrix cesH at time bt= 275 s.
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The decay characteristics in Figs. 2 have several in- different from the frequency of the incident photons. In
teresting features. Each characteristic is nonmonotonic. other words, there is a clear red shift. Third, the
This is related to the fact that in a dissipationless and re- linewidth, line shape, and the red shift are distinctly
versible system, the initial state is never quenched per- different for the two different impurity configurations. In
manently and should recur after sufficiently long time in- the following paragraphs, we discuss these features.
tervals. More importantly, the decay characteristic is For a simple two-level system, semiclassical theory
distinctly different for two different impurity (which invokes only Markovian relaxation processes) pre-
configurations (the solid and dashed curves). This is fully dicts that the optical dipole moment decays with time ex-
expected in view of the fact that the characteristics in ponentially,
Fig. 2 can be interpreted as interference patterns. They
are influenced by the interference of the waves scattered P(t) = P(0)exp(i wot)exp +c.c. (10)
from various impurities and also the interference of the .T2 1
waves reflected from the walls of the quantum box.
Changing the impurity configuration will alter the phase where (T2 ' is an average "relaxation time" and ao is the
relationships between these interfering waves and there- resonant photon frequency. Semiclassical theory there-

fore the interference pattern. Consequently, any decay fore predicts a Lorentzian line shape with no red shift.

characteristic has a direct dependence on the impurity In our case, P(t) can be expressed as [see Eq. (7)]
coordinates. P(t) = -P(0)exp(iwOt) b,* (t)bh W + c.c.

The monotonic parts of the decay characteristics merit P c
close scrutiny. It is found that over a short interval of
time (t < 30 fsec) the amplitude decays with time as
I -at 2. This parabolic dependence has also been ob- 1.00
served in Ref. 7. Over longer time intervals, the decay is
almost linear with time. These features play an impor-
tant role in determining the line shape of the photo- 0.75
luminescence spectra.

Finally, in Figs. 6(a) and 6(b) we show the decay Z
characteristics of the optical dipole moments associated 0.51
with an electron-light-hole transition and an 0
electron-heavy-hole transition. As expected, the dipole
moment involving a heavy-hole transition decays more 0
rapidly. The so-called T 2 times (defined as the time that
elapses before the dipole moment decays to 37% of its in-
itial value) are approximately 150 and 250 fs for the 0.0 J .... . , \ --

heavy- and light-hole transitions, respectively, if one con- 0.0 0.55 1.10 1.65 220

siders the solid curves. This implies that the homogene- lSME (10-12 9C)

ous broadening of the optical spectrum will be larger for (a)
heavy-hole transitions than for light-hole transitions.
However, it is interesting to note that the T2 times are
extremely sensitive to the impurity configuration. For
the light-hole transition, the difference between the T 2  1,0o

times foe the two different impurity configurations is
about 135 fs or the difference between the corresponding
linewidths is about 5 meV which is a significant fraction 0.75

(-50%) of the individual linewidths (full width at half
maximum) themselves. - a

0.50-

IV. FLUCTUATIONS IN THE LINEWIDTH.

LINE SHAPE, AND "RED SHIFT"
OF OPTICAL SPECTRA 0.25

In Figs. 7(a) and 7(b) we show the photoluminescence ,

spectra obtained by Fourier transforming the decay of 0.0
the dipole moment P(t) into the frequency domain (A of 0.0 0.55 1.10 1.68 2.20

the incident photons for light- and heavy-hole transitions. TnE vIo0-2 0)

Again, the two curves (solid and dashed) are for two (b)

different impurity configurations. There are three salient FIG. 6. Time evolution of (a) the electron-light-hole dipole
features associated with the line shapes that merit discus- moment PCn.LH(t), and (b) the electron-heavy-hole dipole mo-

sion. First, the line shape is asymmetric. It is neither ment PCB.HH(t in the presence of elastic impurity scattering.
Gaussian, nor Lorentzian as predicted by semiclassical The solid and dashed curves are for two different impurity
theory. Second, the spectrum peaks at a frequency configurations. In both cases only the envelope is plotted.
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where Ee - Eh =Ao • (14)

Ib(t)-exp j'Et c'(0 (12) In other words, wo is the resonant angular frequency of

I A -  the incident photons corresponding to the effective "band
gap" between the chosen electron and hole subbands.

and Equation ( 1) can now be recast asbh(0=e , Eh- PWt = P(OMexp~ioot) A (0e --0t + c. c.

bh(t)=exp ch(t) . (13)

1 11 =P(O)A (t)cos( ot -0(t), (15)I Ee and Eh are the subband energies for the initial elec-tron and hole states and where A (t) is the magnitude and 0(t) the phase of thecomplex product b* (t)bhp(t) representing the decay.

Comparing Eqs. (10) and (15), one finds two essential
differences. First, the decay A (t) is not exponential. In

fact, over short time intervals it is parabolic and over
longer time intervals it is linear. Consequently, the opti-
cal line shape is neither Lorentzian nor Gaussian.
Secondly, there is a phase shift 0(t) associated with the

lf decay which causes the line shape to be asymmetric

about the center frequency while at the same time giving
rise to a red shift. Physically, the red shift is associated10 -7 \" with the real part of the self-energy correction (for both
electrons and holes) due to the impurity interaction

,.-' \which renormalizes the effective band gap. Similar
features were observed in Ref. 7 which included non-
Markovian relaxation processes in calculating the optical
line shape.

Figures 7(a) and 7(b) also show an appreciable
difference between the two line shapes that correspond to

'1.6.-0...0. 1.6 two different impurity configurations. Both the red shift-1.6 -0.8 0.0 0.8 1.6

DETUNING FREQUENCY (w~ -) (10"4 r ) and the linewidth vary significantly with the impurity
configuration. For this example, the rms values of the

(a) fluctuations in the red shift and linewidth (as the Impuri-

ty configuration is randomly charged) are a few meV.
Such fluctuations will give rise to a unique type of inho-
mogeneous broadening of the line shape for a lateral sur-
face superlattice that consists of multiple two-
dimensional quantum boxes with varying impurity
configuration. From this example it appears that this

, //homogeneous broadening can be an appreciable fraction
10 of the total (inhomogeneous plus homogeneous) broaden-

610 /ing. Moreover, in this case, the inhomogeneous broaden-
/ ing is larger than the energy slacing between the lower

NI subbands for the 100x 1000 A 2 quantum dot. Conse-
quently, such inhomogeneous broadening can sometimes
make it impossible to resolve the discrete optical spectra
characteristic of quasi zero-dimensional structures.

-I. -0.6 0.0 0.0 1.6
OETUNING FREQUENCY (w - 0) (1014 rad/sec) V. CONCLUSION

(b) In this paper we have discussed an optical analog of

FIG. 7. (a) The photoluminescence spectrum for a photon the "universal conductance fluctuations." We have

energy corresponding to 1.4315 eV in a 1000X 1000 A GaAs shown that the line shape, linewidth, and the red shift in
quantum box. This corresponds to a conduction-band-light, the photoluminescence spectra of a disordered sample de-
hole band transition. The solid and dashed curves are for two pend sensitively on the impurity configuration inside the
different impurity configurations. (b) The photoluminescence sample and fluctuate if the configuration is randomly al-
spectrum for a photon energy corresponding to 1.4382 eV. This tered. The practical importance of this phenomenon is
corresponds to a conduction-band-heavy hole band transition. that it can cause significant inhomogeneous broadening
The solid and dashed curves are for two different impurity of the line shape for an otherwise ideal superlattice or

* configurations. multiple-quantum-well structure,

t
$
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Physically, both the conductance fluctuations and their lifetime, so that an electron-hole dipole does not experl.
optical analog, the line-shape fluctuations, have the same ence any inelastic scattering event during its lifetime.
origin. They both require coherence of the electronic There is another important consideration that dist.
(and hole) wave function which is preserved in the pres- guishes the two fluctuation phenomena. For typiciil
ence of elastic impurity scattering. As a result, there can semiconductor microstructures with dimensions ap.
be pronounced interference effects between waves scat- proaching 1 um, the inelastic diffusion length may exceedI
tered from various impurities within a sample which have the sample dimensions at temperatures of a few kelvins %0
a marked influence on macroscopic sample properties. In that the conductance fluctuations can become observable
the case of conductance fluctuations, this can be demon- at temperatures of a few kelvins. On the other hand, the
strated indirectly by using an external magnetic field, inelastic scattering time may exceed the radiative recom.
The field will introduce an additional Aharonov-Bohm bination lifetime only at temperatures of a few tens of
phase shift between the various Feynman trajectories in- millikelvins. Hence the optical fluctuations will usually
side the sample so that changing the field will change the be more difficult to observe than the conductance fluctua-
phase relationships between the trajectories and give rise tions. However, this problem is somewhat less serious in
to aperiodic fluctuations in the magnetoconductance. quantum-dot structures where spatial confinement of the
The nature of these fluctuations are sample specific since electron and hole can significantly shorten the radiative
they depend on the precise details of the impurity recombination lifetime. A radiative lifetime of 20 ps has
configuration within the sample. By the same token, it is been calculated for CdS quantum dots with dimensions of
possible in principle to use a magnetic field to induce the 100 A. 10 Hence the optical fluctuations may become ob-
optical fluctuations. The magnetic field will perturb the servable in quasi zero-dimensional structures at tempera-
various modes in the system thereby changing the in- tures much higher than a few tens of millikelvins.
terference conditions between them. The exact nature of Finally, in drawing an analogy between the conduc-

* the change would depend on the specific impurity tance and optical fluctuations, an important point is
configuration so that one also expects to find sample- whethe- there is any "universality" associated with the
specific fluctuations in the optical spectra as the field is optical fluctuations. The conductance fluctuations are
scanned. These fluctuations are optical magnetofinger- universal in the sense that the rms value of the fluctua-
prints since they are signatures of the exact impurity tions is -ze 2/h which depends only on universal con-
configuration within the sample. However, the field must stants. In the case of the optical fluctuations, no such
be low enough so that level splitting and other magnetic- universality is evident as yet, but more theoretical as well
field-induced effects are negligible, as experimental work is necessary to answer this question

The primary requirement to observe these quantum- satisfactorily.
interference-induced fluctuations is to inhibit phase-
breaking inelastic scattering events. In the case of con-
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A simple quantum-mechanical model is presented for simulating transient electronic transport
in disordered mesoscopic structures in the absence of phase-randomizing inelastic collisions.
We have applied this model to study the time-dependent decay of an electron's momentum in
ultrasmall GaAs structures with various impurity concentrations. As expected, we find that
the momentuin decay rate (and hence effectively the mobility) depends sensitively on the exact
locations of the impurities within the structure because of long-range phase coherence. We also
find that the momentum relaxation rate, calculated quantum mechanically, is larger than the
"semiclassical" rate calculated from Fermi's Golden Rule possibly because of coherent
backscattering that gives rise to the Anderson localization effect.

I. INTRODUCTION derived directly from the time-dependent Schrodinger
Recent advances in nanolithography have made it possi- Equation. The attractive feature of the technique is its utter

ble to realize "mesoscopic structures" in which an electron simplicity and computational ease. In addition, it is extreme-
can traverse the entire structure without encountering ly illustrative of the role of elastic scattering in quantum
phase-randomizing inelastic collisions. In these structures, transport. In Sec. III, we apply this technique to compute the
many new quantum-interference effects that arise from long- momentum (or velocity) relaxation of a single electron in-
range phase coherence have been observed, with some of jected into a field-free region of a disordered two-dimension-
them promising novel device applications. Examples of such al semiconductor nanostructure. In Sec. IV we show how the
effects are Anderson localization,' the Aronov-A'tshuler- momentum decay characteristics depend sensitively on the
Spivak effect,2 the Aharonov-Bohm effect,3 nonlocal volt- precise details of the impurity "configuration" because of
age/current modulation,4 and universal conductance fluc- quantum interference between the scatterers. We also com-
tuations.' Recently, quantum-interference effects have also pare the momentum decay rates calculated with our tech-
been predicted to influence not just the transport properties, nique to the semiclassical results obtained from Fermi's
but even the optical properties of mesoscopic samples, such Golden Rule. In Sec. V we discuss these results and finally,
as the photoluminescence spectrum.6  in Sec. VI, we present our conclusions.

In order to study quantum-interference effects in disor-
dered solids, it is necessary to develop practical, implemen- II. THEORY
table models that can simulate quantum transport in the In order to model transient electronic transport through
presence of elastic scattering. A number of such models have a two-dimensional array of elastic scatterers, we start from
appeared in the literature. They are mostly based on either the time-dependent effective mass Schriinger Equation
Green's function techniques7 or scattering matrix forma-
lisms. However, almost all of these techniques have treated ji 0 = _ - v0 + H'O, (1)
exclusively steady-state transport through spatially varying at 2m*
media. While steady-state transport is important in many where omf(p,t) is the electron's wave function, V' is the
cases, there are situations when transient transport is of in- two-dimensional Laplacian, and H' is the impurity interac-
terest. For example, transient phenomena (such as velocity tion Hamiltonian which is itself time independent since the
overshoot) determines the operational limit of many mod- scattering mechanism is elastic.
ern ultrasmall devices. Consequently, it is transient trans- We can in most cases find any time-varying transport
port, rather than steady-state transport, that is quite often of property of interest by simply solving the above equation to
importance in the study of ultrasmall quantum devices, evaluate the time- and space-dependent wave function

In this paper, we have developed a simple but fully 0b(p,t). While this can be done by straightforward brute-
quantum-mechanical technique that can model time varying force techniques such as finite difference or finite element
or transient transport phenomena in disordered structures. methods, there are other techniques that are simpler and at
Using this technique one can extract the time evolution of an the same time more illustrative. We describe one such tech-
electron's wave function in a disordered medium (i.e., in the 'ique that we adopted. Since the Hamiltonian is time invar-
presence of elastic scattering) and hence calculate any time- iant, the wave function ;b can be expanded in a complete
dependent transport property of interest. In Sec. II, we de- orthonormal set as follows:
scribe the theoretical framework for this technique which is

. 0(p,t) = c'. (00,~ (p), (2)
~P

Present address: Ametek/Houston Instrument, Austin. TX 78757. where the 6's are the so-called "normal modes" of the system
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that are the solutions of the time-independent Schr6dinger sample purely as a result of quantum interference! Recently,
equation in the absence of impurity interaction, this fact has received some attention in a slightly different

The choice of 6p depends on the situation. If we are context9 leading to an investigation into the possibility of
interested in the electron's momentum, we must use basis exploiting this feature to realize high mobility in selectively
stateshP that are eigenstates of the momentum operator. In doped samples.
that case. the simplest choice will be to use plane-wave basis Returning to Eq. (5), we find that this equation clearly
states which are momentum eigenstates exposes the role of impurity scattering in electron transport.

I ( k)( Impurity scattering (or for that matter any type of elastic
l/ -) eP -- k) (3) scattering) does nothing more than simply couple an elec-

where A is the area of the sample. tron from an initial state I k) to all the other states 1k') in the
Equation (2) now becomes system over time. Equation (5) is valid for any wave-vector

state 1k) so that for a finite system with Mf number of states at
ib = IC, (t) 1k). (4) the Fermi level, we can write M coupled differential equa-

k tions of the type of equation (5) which together describe the
Substituting Eq. (4) into Eq. ( 1) and using the ortho- overall behavior of the system in the linear response regime.

normality of the basis states 1k), we get a differential equa- This set of coupled differential equations can be combined
tion for the time evolution of the amplitude ck (t) of any state into a matrix form,
k);

if, (t) 2lk 2 
Ck () + I H'k.kCk. (t), (5) A e t  = "o [c(t) ] + _W'[c(t)], (8)

(t 2m* W 9t

where where [c(t) ] is a column vector whose elements are the am-
= - (k'l V. k). (6) plitudes Ck (t) of the various wave-vector states jk) at timet,

I -.6 o is the unperturbed hamiltonian (a diagonal matrix

Here V,, is the scattering potential due to the nth impu- whose elements are the kinetic energies Aik 1'/2m* of the

rity and the sum accounts for the contribution of all the N basis states I k) ) and h" is the impurity interaction Hamilto-

impurities in the system. nian whose matrix elements are given by Eq. (7).
If we now assume the scattering potential V. to be a Equation (8) is the governing equation for electron

screened Coulomb potential, we get transport in the presence of elastic scattering. Mathematical-

N e p-p.j ly, Eq. (8) belongs to the genre of coupled mode equations
H'kck -- Y ,(k',__ep 1k) that are widely used in the analysis of microwave (or opti-

4rE -' - P. I cal) waveguides and directional couplers. ' It is not surpris-
ing that the governing equation of dissipationless electron

I ", - qI (k- k.., transport should be the same as the governing equations of
A . I, 2e4I [k -'k' ' + A 2 microwaves and optics since it is now widely recognized thatin the phase-coherent regime, and in the absence of many-

The quantity e is the dielectric constant, A is the screen- body effects, the physics of electron transport through a dis-
ing constant, q is the electronic charge, and p. is the two- ordered solid is no different from the physics of microwave
dimensional coordinate of the nth impurity (scattering cen- or light propagation through a disordered medium.' In fact.
ter). the one-dimensional (ID) Schr6dinger Equation describing

The terms in the summation in Eq. (7) are complex dissipationless "propagation" of electrons through a semi-

quantities i.e., they have phases associated with them which conductor structure (with spatially varying potential) isimmediately indicate that the net impurity interaction (ex- identical in mathematical form to the ID Maxwell's Equa-
perienced by an electron) depends on interference between tion that describes propagation of monochromatic light or
the impurities. The nature of this interference is determined microwave through an inhomogeneous medium with a spa-
by the precise locations of the impurities in the sample (or tially varying refractive index. The potential (including the
the impurity "configuration") since the impurity coordinate elastic scattering potential) plays the role of the refractive
p, appears explicitly in the phase factor e - ' P . Note that index.
the sum in Eq. (7), or the net impurity interaction, does not Equation (8) has the general solution
necessarily increase with the number of terms in the summa-
tion (i.e., the number of impurities in the sample) since the [c(t) =exp{ - [i("+ eP )t/] }[C(O)l. (9)
sum is a phasor sum, not an arithmetic sum. There can be
phase cancellations between the terms so that the sum may Given the initial condition Ic(0) 1, the above equation pro-
either increase or decrease with an increasing number of im- vides the amplitudes Ck (t) of every state Ik) at any arbitrary
purities. Consequently, it is quite possible that an electron instant of time t. Once these amplitudes are determined from
could sometimes experience weaker impurity interaction in Eq. (9), the time-dependent wave function tb(p,t) or
a "dirtier" sample (interspersed with more impurities) than Ob(xy,t) can be found readily from Eq. (4). From the wave-
in a "cleaner" sample (with fewerimpurities) iftheimpurity function, one can calculate any time-dependent transport
configuration is favorable. This means that a dirtier sample variable by simply calculating the expected value of the cor-
could sometimes exhibit a higher "mobility" than a cleaner responding operator.
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I1. MOMENTUM RELAXATION OF AN ELECTRON IN A be so strong that the standard deviation in the momentum
DISORDERED NANOSTRUCTURE relaxation rate (arising from a variation in the impurity con-

In this section, we have used the above formalism to figuration alone) can become comparable to the mean value
study the momentum relaxation of a single electron injected of the rate itself.
into a field-free region of a disordered semiconductor nano-
structure. The time-dependent momentum along any chosen IV. RESULTS
direction in the structure (say, the x direction) can be found For purposes of analysis, we consider two-dimensional
from the usual prescription, GaAs structures with dimensions of 1000 X 1000 A.: These

9 1structures can be fabricated individually by electron-beam-p(t) \tb(x,yt) - i a_ Ii(xy,t)1  (10) lithography or can be viewed as the constituents of a lateral
surface superlattice. 2 For the impurity and carrier concen-

where tb(x.yt) is obtained from Eqs. (4) and (9). trations that we have considered in our simulations, the
If we are interested in the time evolution of the momen- average transit time, i.e., the time it takes for an electron to

turn along the direction of the initial momentum ik, we can diffuse across the sample, is always much shorter than the
use Eqs. (4) and (I10) to obtain mean time between inelastic collisions. This condition can be

Pk (t) = I I Ck (t) 1i k'k' expressed ask' Jkl z "  (11) , 15
We now define the momentum relaxation rate l/-,, by L< 1 b()callingW tetime ittne o the momentum tio ecy where L is the lateral dimension of the structure, D is thecalling -, the time it takes for the momentum to decay to

I/e times its initial value, i.e., diffusion coefficient, and r,, is the mean time between inelas-
tic collisions. The right-hand side is the inelastic diffusion

Pk ( IM) 1 Pk (0), (12) length L, (also called the"phase-breaking length"). At tem-
e peratures around 4.2 K, L. in heavily doped GaAs samples

or equivalently typically exceeds I um, 3 so that the condition of Eq. (16) is
overly satisfied in all our simulations up to a temperature of

lCk.(r , kk' 1 (13) 4.2K.
k 1 The impurity configuration in our simulations is genera-
The superscript QM stands for the quantum-mechani- ted by two independent uniform random number generators

cal result. Evidently, 7 M depends on the impurity coordi- that provide thex andy coordinates. A typical configuration
nates since the amplitudes Ck' in Eq. (13) depend on the is shown in Fig. 1. The initial momentum of the electron
coordinates. We have calculated the quantum-mechanical Pk (0) is always assumed to be hikF where kF is the Fermi
rates ll/rM (using Eq. (12)1 in two-dimensional GaAs wave vector whose magnitude is given by k:i = % 2,n.
structures for various impurity concentrations and configu- with n, being the two-dimensional carrier concentration. In
rations. We have then compared these results with the the calculations, we have used 64 wave-vector states so that
"semi-classical" results obtained from the usual Fermi's the matrixl 'has a size 64 X 64. Inclusion of 64 wave-vector
Golden Rule. The latter result is

I Nv, m'q 4 " 2  1

7"cosec + 4k dO, (14)
1000

where N, is the impurity concentration per unit area. 1000

Unlike the quantum-mechanical result, the result of Eq. m
(14) does not depend on the impurity configuration. This
obviously happens because Fermi's Golden Rule deals only
with the probability of scattering (and not with the complex <
amplitude of scattering) so that it contains no information U

about the phase shifts associated with scattering. It is the L 500 U.

phase shifts that depend on the impurity coordinates. In oth- t
er words, the Golden Rule does not account for interference 0
between the scattering events.' Alternatively, we can say (.
that using the Golden Rule is equivalent to assuming that all
the impurities in a sample are located at exactly the same a
point within the sample (point doping) in which case there * 6•

can be no interference between the scatterers. In contrast, 0 ------
the quantum-mechanically calculated rate does take into ac- 0 500 1000
count the precise configuration of the scatterers and exhibits POSITION (A)
strong dependence on the configuration because of quantum FIG. I. A typical random configuration of impurities in a two-dimensional
interference between the scatterers. In the next section we disordered structure. The configuration was generated by two independent
show that the dependence on the impurity configuration can uniform random number generators.

5424 J. Appl. Phys., Vol. 66, No. 11, 1 December 1989 D. R. Poole and S. Bandyopadhyay 5424



states was always sufficient to obtain convergence of the re- over a time interval of I ps which is shorter than the time it
suits. The 64 states that we have included in the calculation takes for an electron to diffuse across the sample. The latter
all have identical magnitudes of the wave vector (and are time is given by td,,, r tans, = A ID, where A is the sample
hence degenerate in energy), but the directions of the wave area and D is the semiclassical diffusion constant calculated
vectors are different. The inclusion of only degenerate states from D = (1/2) V2 ,,c. In these examples, the value of t,ff is
in the calculation is actually not quite rigorous since strong between 1.04 and 10.4 ps.
elastic scattering can couple an electron between nondegen- It appears from Figs. 2(a) and 2(b) that the momentum
erate states over short periods of time. In a more rigorous at first decays almost monotonically and then fluctuates
calculation, and also in order to obtain a reliable estimate of around a steady-state value. Actually, this is somewhat de-
collisional broadening, one should include states with differ- ceptive since no real steady-state condition can ever be
ent magnitudes of the wave vector. Unfortunately, this taxes achieved in this system. We have a dissipationless (and
our present computational resources and is therefore left for hence reversible) finite system with a finite number of states.
future work. Such a system must obey Poincare recurrence or the so-

In Fig. 2 we show a typical set of relaxation characteris- called wiederkehr effect. 4 That is, after a sufficiently long-
tics, i.e.. how the normalized momentum p(t)/p(O) decays time interval, the system must return to a state arbitrarily
with time for various impurity configurations and for a fixed Jose to the initial state and the initial momentum will be
impurity concentration. In this figure, the results are plotted restored. The time that elapses before such a return occurs is

the so-called Poincare cycle which depends on the number of
states in the system. The larger the number of states, the
larger is the period. In Figs. 2(a) and 2(b) we simply have

1.0 , not carried out the simulations long enough to observe the

Carier Concentration 1012 carners/CM 2  Poincare recurrence. Nevertheless, the wiederkehr phenom-
impunty Concentaton 1 mpunties/cm2  enon is an essential feature ofdissipationless transport and is

0.8 ! actually implicit in Eqs. (8) and (9) that describe our sys-
E 0.7 - . tem. Equation (8) is a set of coupled mode equations that are

inherently reversible, and has a periodic solution given by
0.6- Eq. (9). Consequently, the decay charactenstics evaluated

with Eqs. (8) and (9) will also exhibit periodic behavior and
this period is the Poincare cycle.

M 0.4- ...... ' Since the decay characteristics are not monotonic over
E the entire simulation interval, we had to evaluate the mo-

mentum relaxation time rM from the monotonic parts of
0.2 the characteristics (sometimes employing extrapolation).

0.1 The monotonic parts were found to converge rapidly with an
increasing number of states. In every case. we obtained suffi-

0 1 2 3 cient convergence after including 64 states in the calculation

Time (10.13 seconds) In Figs. 3(a) and 3(b) we show histograms of the mo-

mentum relaxation time 7 " calculated for arious 'am-

pies" with a given impurity concentration. Each "sample" is
1.0 'n-, ' ' ' characterized by a particular impurity configuration. Each
0.9" Camer Concentration 1012 iea /cM2 of our histograms is generated from 100 "samples" and in

Im.', t each histogr, m the carrier concentration and the impurity

0.8 - concentration are kept fixed.

E 0.7- In Fig. 4, we plot the semiclassical results for the mo-
06,mentum relaxation time along with the "average" quantum-

0mechanical results for various impurity concentrations. The

05 .a",.average" quantum-mechanical results are obtained by
'... averaging over 100 different impurity configurations, which

E0.4 ',....... means that they are the mean values of the histograms. Fin-

S0.3 ' ~ally, in Fig. 4, we also show the ratio of the standard devi-
Z0. . ation in r M to the mean value of r,Q for various impurity

concentrations. Both the standard deviations and the mean

0.1 values are calculated directly from the histograms.

01
0 0.2 0.4 0.6 0.8 1.0 V. DISCUSSION

Time (10.12 seconds) The histograms in Figs. 3(ai and 3(b) exemplify the

FIG. 2. The momentum relaxation characteristics fir an electron in a disor- strong dependence of the momentum relaxation time r' on

dered two-dimensional GaAs quantum box. The three different curves are the impurity configuration. As can be seen from the histo-
ror three different impurity configurations. grams, the relaxation time can vary over almut an order of
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FIG. 4. Plots of the semiclassical and (average) qiantum-mechanical mo-
30 ,,mentum relaxation times vs impurity concentration. The curve labeled C is

the semiclassical result and the curve labeled QM is the quantum-mechani-
cal result. The average quantum-mechanical results are obtained by averag-

25 ing over 100 different impurity configurations. The line through the quan-
tum-mechanical results is a guide to the eye. The figure also shows the ratioof the standard deviation to the mean of the relaxation times (the curve

i ~labeled R).2o0

')" 15

relaxation times in a few samples with an impurity concen-
1 tration of 10" cm' are actually smaller than those in some

Z 10 -samples with a ten times higher impurity concentration of
1012 cm - '. This is a strong m:. iifestation of quantum-inter-
ference effects and demonstrates that dirtier samples can
sometimes have higher mobilities than cleaner samples de-
pending on the interference between the impurities!

0 It is interesting to note that the histogram in Fig. 3(a) is
0.5 1 1.5 approximately Gaussian in shape. It has been observ-d be-(b) Momentum Relaxatlion Time (10 - seconds) fore by several authors5 that in the case of multichanneled

diffusive transport, the conductances of samples (with vary-
FIG. 3.The histograms showing the dependence of the momentum relaxa- ing impurity concentrations) exhibit a Gaussian distribu-
tion time on impurity configurations. (a) Carrier concentration = 1012
cm -. impurity concentration = 10' 2 cm '. average relaxation tion in the weak localization regime. In our case, we have
time = 39.6 A, standard deviation = 8.06 fs. (b) Carrier concentra- two-dimensional samples of square geometry for which the
tion = 10"2 cm -. impurity concentration = 10.. cm -, average relaxa. conductance G is related to the momentum relaxation time
tlion time = 458 fs, standard deviation = 251 fs. as G = e2 r,,n,/m where n, is the two-dimensional carrier

concentration. For fixed n,, the probability distribution of
rQM will be the same as the probability distribution of the
conductance G so that we also expect to observe a Gaussian

magnitude depending on the configuration. Evidently the profile. The observance of a Gaussian distribution in Fig.
momentum relaxation time becomes large when the impuri- 3(a) is therefore in agreement with the observations of Ref.
ty configuration is such that the interference between the 15.
impurities [see Eq. (7)] becomes "destructive," i.e., there The histogram in Fig. 3(b) however is not Gaussian; it
are phase cancellations. In that case, the net impurity inter- is significantly skewed to the right. We believe that this is due
action experienced by an electron is reduced which decreases to the fact that this case corresponds to a very weakly disor-
the frequency of momentum-randomizing scattering events dered sample (N, = iO' 0cm -2) in which transport is quasi-
and tr - increases the momentum-relaxation time. On the ballistic rather than diffusive. The skewing of the distribu-
other hand, when the impurity configuration is "unfavor- tion to the right of the mean value is caused by the presence
able," the interference between the impurities becomes of ballistic electrons that hardly relax their momenta. It
"construct,,c." In that case. the net impurity interaction is therefore appears that the deviation from the Gaussian pro-
enhanced which in turn reduces the momentum relaxation file is related to quasiballistic transport.
time. As an extreme case, we have found that the momentum From Fig. 4, we find that the quantum-mechanically
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calculated relaxation times are significantly different from VI. CONCLUSION
the semiclassical results, especially for low impurity concen- In this paper, we have introduced a simple quantum-
trations. The difference is as large as a factor of six for an mechanical formalism to study transient electronic trans-
impurity concentration of 10'0 cm - 2 which corresponds to port in disordered mesoscopic structures in the absence of
quasiballistic transport. We also find that the quantum-me- inelastic scattering. Application of this formalism to study
chanical result is always less than the semiclassical result for the momentum relaxation of an electron in a disordered
impurity concentrations less than - 3 x 101 cm - '. This is structure has revealed strong influences of quantum-inter-
probably caused by the well-known coherent backscattering ference effects in both diffusive and quasiballistic transport.
effect " which is responsible for Anderson localization. Be- This indicates that ir'Lference effects play an important
cause of constructive interference between time-reversed role in transient transp,, i and must be accounted for in mod-
Feynman paths (Cooperon channels) which gives rise to the eling transient phenomena such as velocity overshoot that
coherent backscattering effect, there is an increased tenden- play a crucial role in the operation of many modern ultrafast
cy for an electron to turn around inside a sample and travel devices.
backwards. This is obviously a drastic momentum relaxa-
tion process which will significantly decrease the momen-
tum relaxation time. The phenomenon of backscattering is ACKNOWLEDGMENT
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QUANTUM PHASE COHERENT EFFECTS IN THE
PHOTOLUMINESCENCE SPECTRA OF DISORDERED MESOSCOPIC

STRUCTURES '

S. Bandyopadhyay

Department of Electrical and Computer Engineering
University of Notre Dame

Notre Dame, Indiana 46556

I At low enough temperatures. when the inelastic scattering time iii a quantum dot
exceeds the radiative recombination lifetime of photoexcited electrons and holes,
the photoluminescence spectrum of the dot becomes sensitive to the exact locations
of the elastic scatterers within the doL This is a result of quantum interference
whose nature is determined by the precise configuration of the elastic scatterers
inside the dot. Several features of the photoluminescence spectra are influenced by
the configuration, the most remarkable of which is the fact that the usual red-shift
of the peak frequency, associated with bandgap renormalization, can change into
a blue-shift depending on the configuration. The dependence of the optical spectra
on the internal configuration is basically the same effect that makes (universal)
conductance fluctuations sample-specific. An important consequence of this effect
is that different quantum dots in a lateral surface superlattice will exhibit slightly
different spectra if they merely have different impurity configurations, but are
otherwise identical. The resulting inhomogeneous broadening can be comparable
to the energy spacing between the subbands, so that it can sometimes mask the
discreteness of the optical spectra expected of quasi-zero dimensional structures.

I I. INTRODUCTION

It is well-known that elastic scattering does not destroy an electron's phase-
memory so that quantum interference effects are not inhibited by impurity scat-
tering at low enough temperatures. In a disordered semiconductor nanostructure,
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if the inelastic scattering times of both electrons and holes exceed the radiative
recombination lifetime of a photoexcited electron-hole pair, then the optical dipole
constituted by the pair never loses its phase-memory during its entire lifetime. In
that case, the time-dependent decay of the optical dipole, due to impurity scat-
tering, is apt to be. influenced by quantum interferences between the electron and
hole states in the system. The decay of the optical dipole moment determines the
lineshape of the optical spectrum - the lineshape is in fact obtained by Fourier
transforming the decay characteristic - and consequently the lineshape will also be
influenced by quantum interference effects and depend on the precise configura-
tion of the elastic scatterers that determines the nature of this interference [1]. The
important implication here is that in the presence of phase-coherence, not only are
macroscopic transport properties (such as the conductance of a sample) a function
of such microscopic details as the impurity configuration [21, but so are opti-
cal properties like the photoluminescence spectra. In other words, "mesoscopic
physics" includes not only transport phenomena, but also optical phenomena.

A practical consequence of the latter is that different quantum dots in a lat-
eral surface superlattice will exhibit slightly different spectra if they merely have
different impurity configurations but are otherwise identical. This phenomenon
therefore induces a unique kind of inhomogeneous broadening in the photolumi-
nescence linewidth of a superlattice structure whose origin is purely quantum-
mechanical and specifically arises from phase-coherence. In some instances, this
inhomogeneous broadening can be so large that it can even mask the discreteness
of the optical spectra expected of quasi-zero dimensional structures.

i II. THEORY

The time-dependent decay of the optical dipole moment P(t) associated with
transitions between a conduction band state and a valence band state in a disordered3quantum dot is given by [1]

1
P(t) I-P(O)E ,()ht +C.I P

where cep(t) and chp(t) are the time-dependent complex amplitudes of the pth
electronic state and the pth hole state that the photoexcited electron and hole couple
to at time I via the impurity interaction, and the summation over p is carried out
to include all such states in the system. The lineshape of the photoluminescence

spectra .F(w) is obtaied by Fourier transforming the time-dependent decay of
P(t) into the frequency domain w of the incident photons.

The task here is to evaluate the amplitudes ce(t) and ch,(O). For both
electrons and holes, these amplitudes are found from (1]

[c(t)]= exp [-!-t] [c(O) (2)
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where 7- is the Hamiltonian matrix for the disordered system and [c(t)J is a
column vector whose elements are the complex amplitudes cp(t) of the various
electronic or hole states that the photoexcited electron or hole couples to. The
Hamiitonian R can be expressed as

I = o + ', (:3)

where H 0 is the unperturbed Hamiltonian (a diagonal matrix) whose elements are
the kinetic energies of the various subband stales that the photoexcited electron
and hole couple to, and ' is the impurity interaction Hamiltonian whose elements
are given byq 2

H1 = -4- < Op(r) I(r- ri) Iq(r) >= -L2 op(r.o,(r.)

(4)
In the above equation, Op(r) is the wavefunction of the pth subband state

that the electron or hole couples to as a result of the impurity interaction, i.e. it
is the pth eigenfunction of Ho. The impurity potentials were assumed to be 6
potentials located at coordinates at r i . The summation is carried out over the
coordinates of all the impurities in the system and the sum obviously depends on

the exact locations of the impurities. The parameter F is a parameter rcpresenting
the strength of the interaction. The choice of 6-scatterers (instead of screened
Coulomb scatterers) in our model is merely a matter of convenience: it does not
alter the essential physics.

Since the Hamitonian for the system is now clearly dependent on the coordi-
nates of the impurities, it is obvious that the amplitudes cp(t) (see Equation (2))
and hence the time-dependent optical dipole moment P(t) (see Equation (1)) will

also depend on the exact locations of the impurities within the system. Conse-
quently, the optical spectrum of a sample will be a "fingerprint" of the internal
configuration of the scatterers.

III. EXAMPLE

By way of an example, we have calculated the photoluminescence lineshape
(corresponding to an electron-light hole transition) for a two-dimensional quantum
dot with a parabolic confining potential. The material was assumed to be GaAs.
The impurity coordinates were generated by random number generators and the
concentration was 5 x 10t1 cm- 2 . In our calculation, we included 36 electronic
states and 36 hole states 2. The calculated lineshape is plotted in Fig. I

2These states need not be degenerate in energy, since strong impurity
scattering, even though elastic, can couple an electron or hole between states
that are non-degenerate in energy over short periods of time.
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Fig.l The photoluminescence spec.trum (corresponding to an electron-light

hole transition)for a quantum dot with parabolic confining potential. The incident

photon energy two is 1.4623 ev (the bandgap of GaAs is assumed to be 1.42 ev).
The solid and dashed lines are for two diffe-ent impurity configurations. Note that

for one configuration, the peak frequency is red-shifted and for the other, it is blue-
shifted. The difference corresponds to an energy of - 4 mev which is comparable
to the energy separation between the subband states (- 6 mev). Consequently. the

inhomogeneous broadening caused by varying impurity configuration, in different

quantum dots in a lateral surface superlattice, may mask the discreteness of the

optical spectra expected of quantum dots.

* IV. DISCUSSION

To understand the nature of the photoluminescence lineshape in Fig. 1., we
have to first recast Equation (1) in the form

1I l
P(t) = -P(O)exp(i,,ot)' bP(t)bhp(t) + c.c.. (5)

-- where

bP(t) = ecp [E-l] c'p(t) ; bhp(t) = exp [i.L] ch 1 A/) (6)

In Equation (6), Ee and Eh are the energies of the states to which the electron
and hole are photoexcited by the incident radiation and wo is the resonant photon

frequency corresponding to this transition, i.e.

h w = Ee - Eh (7)

I
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We can now recast Equation (5) as

P(t) = P(O)exp(iwot)A(t)e - (t) + c.c.

= P(O)A(t)cos [wot - 0(t)] , (S)

where A(t) is the magnitude and 0(t) the phase of the complex product
Fp b,;(t)bhp(t) representing the decay of the dipole moment. Obviously, both
A(t) and 0(t) depend sensitively on the impurity configuration.

The photoluminescence lineshape F(w) is obtained by Fourier transforming
P(t)

= 1J e'-P(t)dt (9)

Hence we see that the phase 0(t) in Equation (8) has two effects. Firstly, it
makes the lineshape asymmetric about the peak frequency, and secondly, it shifts
the peak frequency away from the resonant frequency Wo. This shift is associated
with the real part of the self-energy correction (for both electrons and holes) due
to impurity interaction which renormalizes the effective bandgap. Ordinarily, one
would expect a shift to lower frequencies, i.e. a red-shift. However, we find
from Equation (8) and (9) that depending on 0(t), or the precise details of the
impurity configuration, the shift can be either a red-shift or a blue shift! That
means that in the phase-coherent regime, quantum interference effects influence
even the bandgap renormalization! This is truly a surprising result and is venfiable
experimentally. A change in the sign of the shift is a remarkable effect of quantum
interference and an intriguing case of microscopic features affecting macroscopic
observables in a non-trivial way.

Finally, the only issue that remains to be discussed is the temperature at which
such an effect could be observed. Inelastic scattering times of - 10 ps have bc n
measured at 4.2 K in GaAs samples [3] with a carrier concentration exceeding 7
x 10 11 cm - 2, whereas a radiative recombination lifetime of - 20 ps has been
calculated for quantum dots [4]. Since the only requirement to observe the above
effect is to ensure that the inelastic scattering time exceeds the radiative recombi-
nation lifetime, it is conceivable that this effect can be observed at temperatures
not too far below liquid helium temperature. This makes it practical to verify this
effect in semiconductor quantum dots.
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We calculate the rate at which electrons bound in a semiconductor quantum well are scattered
out of the well by absorption or emission of polar optical phonons. This escape rate is
important in real-space transfer devices and as a loss mechanism in high electron mobility
transistors. Both quantum confinement effects and the two-dimensional (2D) to three-
dimensional (3D) nature of the scattering are included. For all but very shallow wells, the
real-space transfer rate is much smaller than either the bulk (3D) scattering rate or the
confined (2D) scattering rate. Quantum resonances in the final state result in oscillations in
the scattering rate as a function of electron energy.

Electrons bound in a one-dimensional quantum well can = 0.036 eV. The initial and final state wave functions are
be scattered out of the well if they have sufficient energy. calculated by solving the one-dimensional Schriodinger
This real-space transfer effect has been exploited in storage equation for the effective heterostructure potential. The final
and switching devices' and may limit performance of high state wave functions are chosen to be the scattering states
electron mobility transistors.2 A phonon scattering event with current incident from the left or right. Thus, our final
can provide the necessary momentum to transfer the elec- states are truly free 3D states and carry current. We normal-
tron out of the well. This scattering has been treated thus far ize the wave function by "box normalizing" the incoming
using either bulk scattering rates or the two-dimensional plane wave. For the state with current to the right this means
scattering rates appropriate to electrons confined in the well. L 2 (ek8 +rP e - k) if Z<0

As noted by Brennan and Park- in reporting recent Monte
Carlo calculations of real-space transfer, one should really Ok

+
. (z) (Z) if 0 <z <a,

take into account the change in effective dimensionality [L- /2 t ei'k if a<z
between the initial and final states. Scattering from pseudo- where the well extends from 0 to a along the z axis and has a
two-dimensional (2D) states into three-dimensional (D) depth of V0. L, is the (arbitrary) normalization length for
states presents some subtleties, particularly in the normali- the incoming plane wave.
zation of the states. We present calculations for these escape The escape rate for an electron in a bound state labeled
rates for a model system, correctly accounting for both the by n, with total energy E is then
quantum confinement and the change in dimensionality of l egEsh
the states. The results reveal that the escape scattering rates We(E) 2  N + (wo)
are much smaller than either the bulk or the 2D rates. The (2 -P )
effects of continuum resonances are also apparent.

Our calculation extends the work of Miler et al., who x dk d 3q 1 G k; (q, )5(E' - E :p Ao).
examined the effect of quantum reflections on optical scat- V2 (1

tering rates in quantum well structures.'-' They focused par-
ticularly on effective man discontinuities, which we'neglect Here wo is the optical phonon frequency, N ± (ao) is the

here, and the conditions necessary to minimize quantum re- phonon occupation factor, and lIe, a ! le - l/eo. The in-

flections by impedance matching. While noting that the real- tegrations are performed over all k 's, the z component of
space transfer rate appeared small, they did not actually cal- the final state wave vector, and over all 4, the wave vectors of

culate it. The 2D to 3D nature of the transition was the absorbed or emitted phonon. The squate of the effective

simulated by placing the finite quantum well inside a much matrix element, G2k;(q.), is given by
arger well with infinite barriers. Here we use free, current- + 2

carrying inal states ezplicitly. They aiso examined scatter- G 2.(q,) ( f ()e .( .)dr (2)
ing from states with initial momentum perpendicular to the

heterointerfaces, whereas we consider only initial states Notice that because the final state wave function, *(z) in-
bound in the well. cludesa factor ofL , the factor of L in Eq. (1), which

We calculate the escape rates for electrons scattered by comes from the final density of states, is exactly canceled - As
emission or absorption of polar optical phonons using the a result the rate is manifestly independent of this normaliz-
Fermi golden rule. We use effective mass wave functions and ing factor, as it should be.
a model semiconductor system with spherical energy bands For a very shallow well the phonon scattering rate
and an effective mass of m" - 0.063m0 . Differences in the should approach the bulk scattering rate. The rate for scat-
effective masses in the well and boundary material are ne- tering from a well with 300 A width and 0.005 eV depth is
glected. For the polar optical phonon energy we use & shown in Fig. I for T = 300 K. The rates are shown normal-
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FIG. I. Optical phonon scattering rates fora very shallow well. The well has FIG. 3. Escape rates for scattering out of a well by polar optical phonon
a width of 300 A and a depth of 0.005 eV. Shown are the bound-to-bound scattering. The initial state is the lowest bound state of the well. The phys-
rate (dot-dashed curve) and the bound-to-unbound (i.e., escape) rate ical parameters ar the same as in Fig. 2 with the well depth increasing as
(dashed curve). The total rate, bound-to-bound plus bound-to-unbound, is indicated. Some continuum resonance effects are apparent at low energies.
the solid curve. For comparison the bulk scattering rate is shown with a
dotted curve.

ized to Wo-2a.,wo, where a, is the dimensionless higher energies. This bulk-like behavior is preserved for very

electron-phonon coupling constant given by ac shallow wells. In contrast, for deeper wells the rate increases
= Tou bulk sa tring ry in monotonically, although slowly, with energy. The transition
thesuns i(ms/2f uni. The bulk scae rate Is from bulk-like behavior to the characteristic bound-un-
these units is of order unity. When the total escape rate s bound behavior takes place when the well depth is compara-added to the bound-bound rate, the rate for scattering and ble to the optical phonon energy, as can be seen in Fig. 2.

staying in the well, the result is very close to the bulk scatter- Thi c g the ca cerofo energy depeen ha its

ing rate.6 7 Notice that even for this very shallow well scatter- This change in the character of the energy dependence has its

ing in the well is almost as likely as scattering out of the well. origin in the loss of strict momentum conservation in the z

As the well depth increases, the escape rate decreases, as direction, which results in a larger number of allowed elec-

is shown in Figs. 2 and 3. These figures show the scattering tron and phonon final states.

rates for escape from the lowest bound state of the well. The The dominant feature of the escape rates is their small

total scattering rate is still comparable to the bulk rate but magnitude relative to bulk rates. Notice that these greatly

most of the contribution comes from the bound-bound rate. suppressed scattering rates apply even for electrons with en-

Wells of 0.2 eV depth (300 A width) result in an escape rate ergies significantly larger than the well depth. These elec-

which is already an order of magnitude smaller than the bulk trons have large kinetic energy, with all of their momentum

rate. By the time the well depth reaches 1.0 eV, the escape directed down the well, parallel to the well walls. It would

rates have dropped by nearly a factor of 100 (see Fig. 3). seem, at least at first, that all they need to escape is to shift

In addition to the large effect in the magnitude of the their momentum slightly so that they have a nonzero z com-

rates there is a change in the energy dependence of the scat- ponent. Why is it so difficult to leave the well?

terng rate as the well deepens. For free carriers in the bulk The full analysis of this behavior requires a careful ex-

the scattering rate rises rapidly to its maximum (roughly amination of the effective matrix element and the range of
W o) when the initial energy is one or two optical phonon final state integration permitted in Eq. (1). This will be pre-

energies. It then decreases slowly (roughly as E - i12) at sented in a longer and more detailed treatment than space
limitations here permit.' A simple qualitative argument will
suffice to make the major points. Consider the matrix ele-
ment defined in Eq. (2). The initial state is the lowest bound
state in the well, roughly a sine wave with wavelength 2a,

0.8 ,= and varies slowly across the well width. Consider now a final
0.6- o .state which is just barely free, i.e., k; is small and E;

0/., / o- (#k f1/2m*) is small. Its wavelength outside the well is

very long. but it oscillates more rapidly in the well. The wave
z vector associated with this oscillation is

0.2m( + V 0 1/.

0V .M 00 M 0Since the initial state is nearly zero outside the well, the inte-
gral in Eq. (2) is dominated by the well regio, If the final

ENERGY E/Em state wave function oscillates rapidly in this region, then the
FIG. 2. imspe mum for atIng out ofa weml by Por aooptiml p integral will be nearly zero unless the •f" term from the
,eadwias. The wll ha width of 300 A and the variouduleptasbown. The phonon cancels out this ocillation. Thus, the dominant con-

aegyealsethbaitial dI a me in umt of'the optici poMon mer-
a (in thi am, o.o3eV). Iitially the uetron isi the lo bound sate tribution to the matrix element will be from phonons with q,
of e wal. - a. Because the electron-phonon coupling has a factor of

2216 Apo. Ph tAI. Vol. 54, No. 23.5 hum 6 M Lem Lra.w4 O rod 2316



mentum down the trough is now gone. Thus, only scattering0.06

S..with a large momentum transfer can free the particle from
Uthe well. The l/q 2 factor associated with optical phonon

0 o04 scattering suppresses large momentum transfer events.
9: Finally, we consider briefly the effect of continuum re-
o .0 sonances on the scattering rate. For shallow wells these are

C, not important, but as the well strength increases, the effect of'quantum reflections at the well walls becomes significant.

LI 0. 5.0 The scattering rates exhibit oscillations at energies where the
final state amplitude is enhanced by being resonant with the

ENERGY E/E,, well. Figure 4 shows the rate for escape by phonon emission

FIG. 4. Escape rates for scanerng out of i well by polar optical phonon from the lowest bound state for a sequence of wells with
emission for several deep wells. The initial state is the lowest bound state of increasing depths. The enhancements can be seen to occur
the well. The well width is 300 A and the well depth is 0.80 eV (top curve), near the resonance conditions. These resonances move down
0.82, 0.84, 0.86, 0.88, 0.90. 0.92, 0.94. 0.96. and 0.98 eV (bottom curve), in energy as the well is deepened. Were the system complete-
The curves have the zero offset on the vertical scale for clarity. The enhance-
mint in scattering rates near continuum resonances is clearly eviden, ly one dimensional these oscillations would have genuine

maxima and minima.9" *° The ability to spread the final state
energy over parallel momentum components smears out
these oscillations. This results in the step-like structure ob-
served.
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REAL SPACE TRANSFER RATES FOR
POLAR OPTICAL PHONON SCATTERING

I FROM ASYMMETRIC QUANTUM WELLS

Craig Lent and Lie Liang

Df-partment of Electrical and Corar uter Engineering
University of Notre Dame

Notre Dame, Indiana 46556

We calculate the rate at which electrons bound in asymmetric semiconductor quantum wells are scattered out of the
well by absorption or emission of polar optical phonons. The 2-D to 3-D nature of the scattering is included. The
final states after scattering are states which carry current either to the right or left. We find that rates for scattenng out
of the well can be significantly smaller than bulk scattering rates. We also show that asymmemes in the well shape
result in a directional dependence for the final state current. That is, electrons scatter out preferentially to the left or
to the right depending on the details of the well potential.

KEYWORDS

Quantum wells; real-space transfer, phonon scattering; hot electron transport.

INTRODUCTION

Electrons in a quantum well can be heated by applying a field parallel to the well walls. Such electrons can gain
energy sufficient to escape the well. This real space transfer phenomena has been studied extensively by Hess and
others (Hess, 1981), and is exploited in the CHINT and NERFET devices (Kastalsky, 1984; Luryi. 1984). Extensive
analysis of these structures has been done using semiclassical Monte Carlo techniques (Brennan and Park, 1989). Anecessary input to such calculations is the scattering rate from the confined electron states to the free states out of thewell. Currently, approximations are used which neglect the 2-D to 3-D nature of the transition. We calculate the rates
for scattering from the bound 2-D states of a quantum well into free 3-D states by emission or absorption of polar
optical phonons. We focus here on the effects of well shape on the scattering-out process. In particular, we investigate
the effect of asymmetrically shaped wells on the symmetry of the scattering.
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Fig. I. Potential energy profiles for some asymmetric quan-
tum wells
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THEORY

We calculate polar optical phonon scattering rates using the Fermi Golden rule,

IV = -7 J I< -1lHe-.phI' > 126(E, - Ef) dSf,

where the integral is over all final states. Initial and final wavefunctions are solutions to the single-band effective mass
Schrddinger equation. We assume a parabolic band with effective mass m" = 0.063 mo. Differences in the effective
mass in the well and barrier materials are neglected. For the optical phonon energy we use hw = 0.036 eV. The
quantum well is in the z-direction, extending from z = 0 to z = a. The initial bound-state wavefunction consists
of a product of plane waves in the x and y directions and a function t,(z) which is calculated numencally for each
potential. Our approach is similar to Maller and coworkers (1988).

The final state wavefunctions are chosen to be eigenfunctions of the current operator which carry current either to the
right (+:) or to the left (-z).

SL;'/ 2 (ek. + rRCe k,.) if z < 0
k',(z = uRWz if 0 < z < a ,(2)

L; 1/2 tRC'k,, if a < z

f L; 1 2 tLe - k.. if z < 0WL,(Z)k L ifO0< z< a (

L.I) (e-"'k'  + rLek) if a < z

We normalize the wavefunction by "box-normalizing" the incoming plane wave with L, being the (arbitrary) normal-
ization length. The final state wavevector, k,, is always taken to be positive. The functions UR(:) and uL(z) are foundby numerically solving the Schrodinger equation in the well region and matching to the form of the solution outsidethe well. The complete final-state wavefunctions can be written

I ,j,,(z,V. z)
where the final state energy is

E' =--( + k,2 + k,).

The rate for an electron to escape from a bound state labeled by n, with total energy E, into a state with current to
the right (R) or left (L) is given by (Ridley,1982; Lent, Liang and Porod, 1989)

w~RIL) L.q Iew' j d3 IG(RI)2 (E' - E :: hwob. 4
E-(2r)3~ 2cp q2 dkkI

The upper and lower sign denote phonon emission absorption respectively. The phonon occupation factor is given by

I 1 1 1I = ep(hwo/kT) - 1 +  2' E ,
and l/p =_ 1/., - I/co. The integrations are performed over all positive k', and over all q. the wavevector of the
absorbed or emitted phonon. The square of the effective matrix element is given by

G(.L')(q, [ 0 R)(z)le (z)dz.. = 5)

Because the final state wavefunction includes the normalizing factor of L;1/ 2, the factor of L, in Equation (4), whichcomes from the final density of states, is exactly canceled. As a result, the rate is manifestly independent of thisnormalizing factor, as it must be.

RESULTS

We examine optical phonon scattering out of several asymmetric quantum well smructres. Figure la shows the profile
of a well with one abrupt interface and one linearly graded interface. The length of the well is 300 A and the maximum
depth is 0.2 eV. We assume a temperature T = 300 K. Figure 2 shows the total rate (phonon emission plus absorption)
for escape from the well by polar optical phonon scattering. The initial state is taken to be the lowest bound state of
the well. The rate is plotted as a function of the initial kinetic energy, in units of the optical phonon energy. Note that
this energy can be much larger than the well depth because the bound electron can have a large momentum parallel

I
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Fig. 2. The normalized escape rates for the Fig. 3 The normalized escape rates for the

potential profile shown in Figure la. The potential profile shown in Figure lb.

rates are shown for scattering into final state

with current going to the right (WR) and to

the left (WL).

to the well walls. The rate is shown for scattering out of the well into states with current in the positive z direction

(IVR) and in the negative z direction (WL).

An important feature of this result is the magnitude of the rates. The rates are shown normalized to W =- 2ck,,uo,

where a,, is the dimensionless electron-phonon coupling constant given by ap = (e2/4rrhep)(m /2hwou 1/ 2 . The bulk

scattering rate in these units is of order unity, as is the bound-bound scattering rate. The rate for transfer out of the

well is an order of magnitude smaller. We have discussed this suppression of the real-space transfer rates elsewhere

(Lent and Porod. 1988; Lent, Liang, and Pored, 1989) and shown that it grows to a factor of 100 for a 1.0 eV well.

The reason for this can be seen by considering the quantity E, E - h 2/2m'(k2 + k2). In the initial state E, is

negative, roughly -0.2 eV. The final state has an E, which is positive, although it may be very small if the final-state

electron is just barely free. Since the total energy, E can change only by llwo, most of the additional energy comes

at the expense of momentum in the z and y directions. Since momentum parallel to the well walls is conserved, this

implies a phonon scattering event that has a large qll T + ' The 1/q2 factor in the scattering rate, which is

characteristic of polar optical scattering, suppresses large momentum transfer events. Thus the rate of transfer out of

the well is small compared to bulk rates or bound-bound scattering rates.

Here we focus on the other obvious feature of Figure 2, the difference in the scattering rate for scattering to the right

and to the left (i.e.. into states with current in the +z and -z directions). The scattering out of the well is preferentially

to states with current going in the direction from the graded interface to the abrupt interface. We can define the relative

difference of thn two rates,
AR W'(E) - WvR(E)

WR(E)

AW[W varies with energy between 20% and 40%. Since the ramp in the potential energy corresponds to a classical

force in the negative direction it is tempting (but incorrect) to conclude that this is the source of the preference for

scattering into that direction. In an effort to understand the physical origin of this asymmetry in escape rates we have

calculated the the phonon scattering escape rates for a number of other well shapes.

50
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-
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Fig. 4. The normalized escape rates for the Fig. 5. The percent difference between the

potential profile shown in Figure Ic. escape rates for scattering to the right and left
for wells with profiles as shown in Figure ld.
The difference is plotted as a function of the

slope of the graded interface.I
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I Figure lb shows a well with one large potential step on the left and two smaller potential steps on the right, a %-ry
crude approximation to a graded junction. We take V = 0.2 eV, d = 150A, and D = 300 A, so that a reasonable
comparison can be make to the previous linearly graded potential. The potential is reduced by one half on the shallow
end of the well. The corresponding scattering rates am shown in Figure 3. Again, a clear preference for final states
with current moving from the "graded" interface to the abrupt interface is evident. AW(E)/W is about 5%. somewhat
less than the previous potential, That the effect persists at all is evidence that an explanation based on the classical
force in the well is inadequate.

Figure Ic illustrates a well with a very soft grading of the potential on one side. The maximum well depth remains 0.2
eV and the width (measured to the point of inflection) is again 300 A. The two escape rates are shown in Figure 4. The
difference in escape rates AIV(E)/W is very comparable to the linearly graded well shown in Figure 2. Evidently,
the precise form of the grading is not crucially important.

To examine the effect of the steepness of the potential grading on the rate asymmetry we calculate the escape rate
for a family of curves :',own in Figure Id. The left wall of the potential well is always abrupt. with a depth of 0.2
eV. The total width of the well is held constant at 300 A. The length of the flat portion of the well d is varied and
correspondingly, the slope a of the right side of the well. We want to examine the effect of the changing slope on
the diffe.ence in the scattering rates. Figure 5 shows AIW/W, evaluated at Ek = 10h,o. as a function of a for this
family of potential wells. Note that the asymmetry in the escape rates vanishes smoothly as the slope of the right
wall becomes large. In the limit a - o, the well becomes a symmetric square well and any asymmetry must vanish.
For small values of the slope there are two sharp peaks in AV/W. These correspond to resonance conditions which
occur when the number of bound states in the well changes from 4 to 5 and from 5 to 6. They are caused by the
presence of a continuum resonance, which will become the new bound state, just above the well. A full treatment of
these resonance effects will not be presented here.

DISCUSSION

I We turn to a discussion of the origin of the asymmetry in the escape rates. Four basic ingredients go into the calculation
of the the rates via Equation (I): the initial state wavefunctions, the final state wavefunctions, the perturbing potential.
and the density of final states. For the two processes we are considering, scattering into positive and negative current
states, the initial state wavefunctions are identical. The perturbing potential, the electron-phonon interaction, is alsoIclearly the same. Both positive and negative current states have the same density of states. The asymmetries im the
escape rates are due to differences ir. the final-state wavefunctions.

Figure 6 shows the absolute square of the final state wavefunctions in the well region for a well as shown in Figure
Id with d = 60 A. The final states have E, = .01 eV. Such "barely free" states have a dominant conmbution to the
scattering rates because of the l/q suppression of high momentum transfers. The state WL has a considerably larger
amplitude in the well region than the state Z,R. Since the initial bound-state wavefunction is only large appreciable in
the well region, it is this region that contributes most to the integral in Equation (5). We define FL and FR to be the
integral over the well region of the final state probability density.

FL = J 10L(z)dzI2

FR = fj0,(z)dzJ'

I I 1 .2 F L = J I L d z

S0.4 =

-i-1 0 0 0 50 100 toIi
z (Angstroms) Slope a (meV/nm)

Fig. 6. The probability density for two pos- Fig. 7. The difference between the inte-
sible unbound final states. Both states have grated probability densities for final states
the same energy but one caries current to with current in opposite directions. The dif-
the right and the other carries current to the ference is plotted as a function of the slope
left. of the graded side of the well (shown in Fig-

ure Id).
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Note that these are equal to the effective square matrix elements ) if we make the (very rough) approxi-
mation that q, = 0 and w,,(z) =constant. Figure 7 showns the percent difference between FL and FR as a function
of the slope a for the family of linearly graded potential wells (Figure Id). These are all evaluated at an E, of 0.01
eV. Clearly the basic structure of the rate asymmetry shown in Figure 5 has as its origin this difference in final state
amplitudes.

The importance of the potential graoing on one side of the well now becomes clear and we can offer the following
qualitative explanation for the asymmetry in the escape rates. Consider again the potential shown in Figure Ia. A
plane wave incident from the left, as in wR, reflects first off of the abrupt interface. That part of the wave which
is reflected, contributes nothing to the effective matrix element in Equation (5). There is some additional reflection
at the second interface, but it is weak because that interface is graded. By contrast, a plane wave incident from the
right, as in ?PL, is reflected minimally by the first (graded) interface it encounters. Most of the reflection occurs at the
second, abrupt interface. Reflection there increases the amplitude of the wavefunction in the well region, and thus its
contribution to the matrix element. The total reflection coefficient is. of course, equal for 0,5 and vL. Yet because
one is reflected before it gets to the well region and one is reflected over the well. a difference in amplitudes in the
well region results. The matrix element for scattering to the left (into cL) is therefore larger than the matrix element
for scattering to the right (into 0,R). It is this difference which is at the root of the asymmetries in the scattenng rates.

* CONCLUSIONS

We have reported calculations of the real-space transtec rates for electrons being scattered out of asymmemc quantum
wells by polar optical phonon emission ant absorption. Including the correct form for the final state wavefunctions
(calculated numerically) and the explicitly 2-D to 3-D nature of the scattering yielded two new results. The magnitude
of the real-space transfer rate is sigrificantl,' smaller than the bulk or bound-bound scattering rates. Additionally.
we find that asymmetric wells result in carriers scattering preferentially into states which carry current a partcular
direction which depends on shape of the well. 1 he magnitude of the asymmetry is in the 20 - 40% range for wells
with one linearly graded interface and one abrupt interface. We have shown that the asymmetry in the scattenng rates
is due to an asymmetry in the amplitude of the final state wavefunctions over the well region.
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Escape from quantum wells via polar optical phonon scattering
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We calculate the rate for electrons confined in a quantum well to escape to unbound, current-
carrying states by polar optical phonon scattering. We explicitly include the two-dimensional
to three-dimensional nature of the transition and choose final state wave functions which are
genuinely unbound. We find that the escape rate decreases dramatically as the well depth
increases, even for electrons with more than enough energy to surmount the well walls. The
real-space transfer rate is much smaller than either the bulk scattering rate or the confined
bound-to-bound scattering rate. We explore this phenomenon and give a detailed explanation
of the rate depression. We also show that the electron escape rates have a strong directional
dependence in asymmetric wells. Electrons scatter out preferentially in the direction of the
more abrupt interface.

I. INTRODUCTION II. THEORY
Electrons confined in a quantum well which are heated We calculate polar optical phonon scattering rates using

by an applied field can gain enough energy to escape from the the Fermi Golden rule,
well. The momentum necessary for getting out of the well
may be provided by electron-phonon scattering. This real- W 1 (0b1IH.ph I 1I2b(Ei _ E,)dS, (1)
space transfer effect has been studied by Hess and the others' f(

and exploited in some device applications.2  The Monte where the integral is over all final states. The perturbation

Carlo technique has been widely used to analyze electron Hamiltonian describing the coupling of electrons to polar

dynamics in such device structures.' A necessary input to optical phonons is,9

Monte Carlo calculations is the transition rate for electrons
confined in the quantum well to scatter into free states out of H, ee, =q -
the well. Previously this scattering rate has been approxi- 4N Vo q + (iQq e ' + c.c.) (2)
mately taken as either the three-dimensional (3D) bulk scat-
tering rate or the two-dimensional (2D) bound-bound scat- where e is the electron charge, e* is the magnitude of effec-
tering rate.4 The 2D to 3D nature of the transition has been tive charge on the atoms in the unit cell, V is the volume of a
neglected. Recently, we reported a calculation of this real- unit cell, N is the number of unit cells, q is the phonon wave
space transfer rate which fully includes the 2D to 3D charac- vector, Qq is the normal coordinate, and c.c. stands for com-
ter of the transition.5 Our results show that by choosing the plex conjugate. It is well established that polar optical
final states as free, current-carrying states explicitly, one ob- phonon scattering is the dominant scattering mechanism in
tains real-space transfer rates which are much smaller than W s-V matier er a wide temperature range t2

ither the bulk scattering rate or the 2D confined scattering We consider electrons which absorb or emit a phonon
rate. Here we present the detailed calculation and explana- through the perturbation represented by Eq. (2). In so do-
tion of this phenomenon and include an additional extension g, an electron may transfer from a state which is bound in
of the calculation to more general quantum well structures one direction by a potential well to a state which is complete-

which include wells which have an asymmetric potential ly free. We consider an electron which has made such a tran-

profile.' sition to have escaped from the well. In order to calculate the

Our calculation extends the work of Miller et aL,"'8  rate for an electron to escape from a bound state in the well to

who were primarily concerned with impedance-matching unbound states out of the well using Eq. (1), it is necessary

conditions which minimize the effect of quantum reflec- to calculate the initial and final eigenstate wave functions.

tions. They focused on the consequences of effective mass We assume a single-band, spherical, effective-mass model

differences in the well and barrier materials, a difference we and neglect the difference between the effective masses in the

neglect. In their treatment, the unbound three-dimensional well and boundary materials. The quantum well is in the z

states were approximated by the bound states of a very large direction, extending from z = 0 to a. Both initial and final

well. states consist of a product of plane waves in the x and y

Section II below develops the theory of polar optical directions and a function of z, which is the solution of the

phonon scattering out of quantum wells. In Sec. III we dis- one-dimensional Schrddinger equation for the effective het-

cuss our results for escape from square-well potentials. Sec- erostructure potential.

tion IV focuses on the directional preference which occurs in The initial state wave function is labeled by bound-state

scattering out of potentials which are not symmetric. Our index n and a vector k in x-y plane. and written as

conclusions are summarized in Sec. V. b,,k, (x,yz) =Aek# + 1A00. (z). (3)
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The final state wave function is written dSf = L L) L d 3k , V

,A,."A;(xyz) = Ae'AkI + "tb, (Z), (4) 2r 2ff 2r (21r) 3

The rate for an electron to escape from a bound state labeled
where b,; (z) is chosen to be a scattering state which carries by n, with total energy E, into a state with current to the right
current either totheright ( + z) or to theleft ( - z). In both (R) or left (L) is therefore,
cases A is an overall normalization factor which depends on Lz (e-ow
the current and carrier density. The z-dependent part of the W (/L)(E) = - (e3-. N ( A ; dk 'd q_
wavefunction for the unbound states which carry current to (2ff) 3 \ 20 q
the right (left) is denoted ,1R LI(Z): x G2(R IL)(q )6(E' - E Aw,). (12)1/(ek-' + 2-/L Gkk; (q)fE E hto (2

rL - i2( e~k.Z + re - ,kz) if Z< Notice that because the final state wavefunction includes the
(Z) = uR(Z) if0<z<a, (5) normalizing factor ofL Z r , the factor of L, in Eq. (12),

which comes from the final density of states, is exactly can-

L -/2 tek ifa <z celed. As a result, the rate is manifestly independent of this
L -/2 tLe- if z < 0 normalizing factor, as it must be.

O4L- (z) = UL (Z) if 0 <z <a. (6) In order to carry out numerical calculations, the 6 func-
-1/2 tion and integral limits in Eq. (12) must be reexpressed. The

IL  ( + rLe'A") ifa <z integral over phonon wave vector q can be expressed in cylin-
We normalize the wave function by "box normalizing" the drical coordinate system, that is d 3q = qj dq1 dOq dq,. Here
incoming plane wave part of the wave function. Here L, is 09qa is the angle between q and k,,. Changing the integral
the (arbitrary) normalization length in which there is unit variables k; and q,, to E",Eq,,, which are defined as
probability of finding an incoming particle. The final state E; h2/ ;2/2m*, (13)
wave vector, k ;,is always taken to be positive. The functions
u. (z) and UL (z), and the reflection and transmission coeffi- E,, - 2m*,  (14)
cients,rR,tR,rL, and tL, are all calculated by numerically
solving the Schrddinger equation in the well region and and denoting the integral over q, by
matching to the solution outside the well. + (L)G2(R ILq

The rate for an electron to escape from a bound state to ne /L (E',E,1 )- dq, (15)
an unbound state with current to the right (R) or left (L) is . 2m*Eq,/i 2 + q (

then given by we have

I 2o, f dE'
W(R/L)(k.,k),n) = ( (2ff) 3 7 2&)) (WO) -

-Ekk ± .a)dSf, (7) X dEq, _2(RL(

where the square of the matrix element, I MR IL 1 2 is X J 9G-dq,

IM(RL)12= xOe 2  imN ±LT

ifR/L)I2 -
2 CN (wo)IMfR/LI2. (8) x6(E' - E htwo). (16)

The upper and lower sign are for absorption and emission We rewrite the delta-function in terms of
respectively. The phonon occupation factor is given by 6E' - E T &awo) = 6 (a ± cos 0q,) (17)

N1 0 )= I I I where

exp( aoo/k,T) - 1 2 2 a = E; - E + E,, T rh o,  (18)

and l/er-l/E, 1lIo. ifR/L) the electronic part of 2V(EE)E
matrix element, is given by (

The integral over 0 ,, of the delta function will yield a factorIM~RL)I? 2ff 2ff 45k,±q1 -kj (.L(. C,
i L LY - ) .9) of 2/#r---a7. Then the scattering rate becomes

Here the Dirac delta function represents conservation of mo- W (IL) C I 1 (e 2a'° N±C,)*
mentum in the (x,y) plane. The momentum uncertainty per- (2f)\r 2c, 242

pendicular to the interfaces due to the localization inside the X f "a ;d ., dE"
quantum well is represented by the effective matrix element x o dEqIG2(eIL) 0 E r,

G.k R (q,), which is given by

2(R/L)(q f /L (Z) 0 2 0 x Z UR/L) (E;,Eq),.k, (q,) = [!k ()] el""0, (z)dz .(10). .. ,- -,)

The integration over the all final states involves the wave C20)
vector q of the absorbed or emitted phonon and final electron where the integral range (E ,o,E : ma) over E; is deter-
wave vector k', that is mined by the restrictions

1742 J. AppI. Phys.. Vol. 68, No. 4, 15 August 1990 L. bang and C. S. Lent 1742



a tered by emitting or absorbing a polar optical phonon. The1 6 1 l " £ 0. (21) final state after scattering may be either a free state out of the

Further manipulations yield well (escape) or bound state in the well with a different par-
allel momentum (bound-bound scattering). We calculate

W (/L) (E) = Wo (m * (wo) 1/2 N ± (w) the total rate, which includes the escape rate and the bound-
\ (2vr)" / bound rate using Eq. (10), (15), and (22). The results are

fo- d E ;, shown in Fig. 1. Also plotted (dotted line) is the bulk rate for
xJ dEq, J dE; polar optical phonon scattering given by9

G 2(RL) (E;,E W(E) = Wo( 1/~)2 n(q)sinh 1 ~ )/2
x -o ,...)Wo &0, ,

7Em, )(EVm -E; -
(22) + [n(q) + l]sinh' E-- 11. (29)

where ? j
Here the first and the second terms in the square brackets are

E;m. = 2 _(E - E )E, + E, - Eqj, ± ha, (23) absorption and emission rates, respectively, and it is under-
stood that the second term is zero if E < fco. The rates are

E ,,= -2/(E-E,,)Eq E q ± .. (24) shown in unit of basic rate W. Figure 1 illustrates that, as

E max(0,E'm,, ), (25) expected, the total rate is very close to the bulk rate. This

and W, is the unit of basic rate, which is given by serves as a check on the calculation. Notice that even for this
very shallow well, scattering within in the well is almost as

Wo = 2apo. (26) likely as scattering out of the well.

Here

e2 (m' 1/2 B. Depth dependence

= \- a-o) (27) We examine the dependence of the escape rate on well
depth by considering quantum wells with 300-A width but

is the dimensionless electron-phonon coupling constant various depths from 0.005 to 1.0 eV. For simplicity we al-
(a, =0.07, wCo=5X 10, Hz, and WO=7X 101" Hz for ways choose initial states which are in the lowest energy
GaAs). bound state of the well. We calculate W, (E) using Eq. (22).

Our procedure is then as follows. We first solve the one- We will denote this rate as simply W(E). The total escape
dimensional effective-mass Schrddinger equation numeri- rates (emission and absorption) for this series of wells of
cally, using an Airy function technique, 3 to obtain the different depths are shown in Figs. 2 and 3. These rates are
bound-state wavefunctions 0. (z) and the final state wave also normalized to Wo as in Fig. I.
functions 0 ,RL( R. . We then calculate the effective matrixfuncts " zAs these figures illustrate, the escape rates decrease dra-element G (,)frmE.(0.Tesatinrtes

elm (q2) from Eq. (10). The scattering rate is matically as the well depth increases. The rate for the well of
then calculated using Eqs. (15) and (22). Similarly, by tak- 0.2-eV depth has already become an order of magnitude
ing initial and final states to be both bound we can calculate smaller than the bulk rate. When the well depth increases to
the bound-bound scattering rate. Throughout we use an ef- 1.0 eV, the escape rate drops by almost a factor of 100. How-
fective mass of m* = 0.063 m, and foo = 0.036 eV for the ever, if the escape rate is added to the bound-bound rates
optical phonon energy. All the calculations are at T = 300
K.

Ill. SQUARE WELL POTENTIALS

We consider first escape of electrons bound in a square 1.50.
well potential. Because of symmetry, the electron escape
rates (and effective matrix elements) to final states with cur. 1.00 / .... . bulk
rent to the right and left are identical and we simply sum the 99tt

* two contributions.0

W,,(E) = WR(E) + Wl-(E). (28) 0.50

A. The weakly bound limit 1O.O
In the limit of a very shallow quantum well, the scatter- .

ing rate should approach the rate in bulk material. Since at
least one bound state always exists, we calculate the escape
rate from a shallow well and the bound-bound scattering FIG. 1.Optical phonon scattering rates foravery shallow well. The well has

which leaves the electron in the well. We examine a well with a width of 300 A and a depth of 0.005 eV. Shown are the bound-to-bound
rate (dot-dashed curve), the bound-to-unbound (i.e., escape) rate (dashed

300-A width and 0.005-eV depth for which only one bound curve). The total rate. bound-to-bound plus bound-to-unbound. is the solid
state exists. The electron, initially in the bound state, is scat- curve. For comparison the bulk scattenng rate is shown wth a dotted cune
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0.4 i / 0"005 eV
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~~002

0.2 eV b-ub

, .0 5.0 10.0 15.0 U 0N.0 5.0 10.0 15.0
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FIG. 2. Escape rates for scattenng out of a well by polar optical phonon
scattenng. The well has a width of 300 A and the various depths shown. The FIG. 4. Optical phonon scattering rate for a deep well. The well is 300-A
energy scale is the initial electron energy in units of the optical phonon ener- wide and 0.2 eV deep. Shown are the bound-to-bound rate (dot-dashed
gy (in this case. 0.036 eV). Initially the electron is in the lowest bound state curve), the bound-to-unbound (i.e. escape) rate (dashed curve ). The total
of the well. rate. bound-to-bound plus bound-to-unbound. is the solid curve. For com-

parison the bulk scattering rate is shown with a dotted curve.

which includes the rates from the lowest bound state to all
other bound states, the total rate is still very close to the bulk
rate (see Fig. 4). The total rate does exhibit a sawtooth is small even when the electron initially has a much larger
structure due to the separation of bound state energy levels, energy than the well depth. This suppression of the escape
This feature of the bound-bound rate has been discussed by rates can be understood as the consequence of two facts: ( I )
Ridley and Riddoch. 10.1 From Fig. 4, it is clear that most of only phonons with momenta larger than a critical value can
the contribution to the total rate comes from the bound- contribute to escape from the quantum well, and (2) the
bound transitions. nature of the electron-phonon coupling results in a l/q2 de-

Note that the escape rate is small even for electrons with pendence of the scattering rate on the phonon wave vector q.
more than enough energy to surmount the well walls. An Consider the effective matrix element defined in Eq.
electron energy of E = 15Atwo corresponds to 0.54 eV. Figure (10), for the case of an electron initially in the ground state
3 illustrates that the escape rate for such an electron in a well of the well:
0.4 eV deep is still more than an order of magnitude smaller 4f_ 12
than the bulk or bound-bound scattering rates. We discuss G i.(q 2 ) = f J( . (30)
the explanation for this rapid decrease in the escape rate with -o

increasing well depth below. The initial state 0, (z) we can treat approximately as a sine
wave with wavelength 2a inside the well and neglect the ex-

C. Magnitude of the escape rates ponential tail which penetrates the well walls (this approxi-
mation is for purposes of discussion only - in the calcula-The most obvious feature of the escape rates from quan- tion we use the exact wavefunction). The final state

tum wells is that they are so much smaller than either bulk ti/L)on we csitse of avbnation .of r flt an tran
O'k "' W consists of a combination of reflected and trans-

scattering rates or bound-bound scattering. The escape rate
mitted plane waves. If we consider a final state which is just
barely free, K; will be small. This corresponds to a plane
wave with a long wavelength outside the well region. How-
ever, the contribution to the integral in (30) will be dominat-0.120.V ed by O k, evaluated inside the well because the initial-state

A 0wave function is almost zero outside the well. In this region
0.08- the final-state wave function is a combination of plane waves

.4V with wave vector

.0.04 0 .6v K' = 2m*(E + Vo)/, (31)
which corresponds to a much smaller wavelength if Vo is

.non-negligible. The integrand in (30) is therefore the prod-
< 0.0%. 5.0 10.0 15.0 uct of the slowly varying initial state wave function with

&n oscillating plane waves e± "" and e' .This rapidly oscillat-
E/4 CD0 ing product will make the whole integral nearly vanish un-

FIG. 3. Escape rates for scattering out of a well by polar optical phonon less
scattering. The initial state is the lowest bound state of the well. The phys- q ± K;. (32)
ical parameters are the same as in Fig. 2 with the well depth increasing as
indicated. Some continuum resonance effects are apparent at low energies. If the well depth Vo is large r is large even for small E;, i.e.,
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inversely proportional to q, as seen in Eq. (2), the golden-
rule scattering rate (1) suppresses large-q phonon scattering
events. Whereas in bulk scattering the small-q phonons
dominate, scattering out of a well relies on large-q phonons
and so is correspondingly reduced in magnitude.

D. Energy dependence

Another important feature of the escape rate is the de-
pendence on initial electron energy. There is a significant
change in this energy dependence with different well depths.
In bulk material the total scattering rate reaches a maximum
value when the initial electron energy is around two optical
phonon energies. It then drops roughly as E at higher
energies. From Fig. 4, it can be seen that the scattering rates
in the shallow quantum well have a similar behavior. There
is a transition to qualitatively different behavior as the well
depth increase to a value comparable to the optical phonon

qz energy. For wells deep compared with -hw, the escape scat-
tering rate increases monotonically with electron energy.

FIG. 5. The effective m'tnx element G I (q.) as a function of q. and The increase is fairly slow after the initial jump in which
E' = (Ak')'/2m* for the potential well with a depth of 0.005 eV. phonon emission becomes possible.

This change in energy dependence is due to an increase
in the number of phonons which can participate in the scat-

for electrons which are barely free. tering proces. In bulk scattering the matrix element between
The above argument is supported by Figs. 5 and 6, in initial and final electrons states yield a delta function which

which the effective matrix element G f..k 1 (q.) is plotted as a enforces momentum conservation. In scattering from a well,
function of q, and E" for well potentials V, = 0.005 and 0.8 the momentum conservation in the z direction is relaxed be-
eV. It is apparent that the matrix element peaks at larger cause of the Heisenberg Uncertainty associated with the lo-
values of q, in the deeper well. calization of the electron in the well. This is reflected in the

An electron initially bound in the well has no momen- effective matrix element G' . ;(q,) defined in Eq. (10),
turn in the z direction ((,) = 0). To be free it needs to which would be a delta function if the initial state were a
acquire only a vanishingly small z component of momen- completely delocalized plane wave. Figures 5 and 6 show
tum. Nevertheless, to escape from the well, it must emit or plots of G2 for a shallow and deep well. The deep well results
absorb a large-momentum phonon - one with wavevector in a considerable broadening both as a function of q, and
roughly equal to K'. Because the electron-phonon coupling is E (k ) 2/2m*. This broadening represents the relaxa-

tion of momentum conservation in the z direction and results
in many more phonons being able to contribute to the scat-
tering into a particular final electron state. The final-state
integration includes the integration over all values of q, and
values of E: up to a maximum given by energy conservation
(Eq. 23). For the shallow well, because G 2 is much more
sharply peaked, this contribution increases only linearly as
the range of final-state integration is increased. The other
factors in Eq. (22) reduce the linear increase to a slow de-
crease. For the deep well, however, the very broad peaks
yield a rapidly increasing contribution to the integral with
higher energy (see Figs. 5 and 6). Note that the magnitude
of the matrix element is much larger for the shallow well
than for the deep well, as discussed in the previous section.
The broadening of the momentum-conserving peaks in the
matrix element explains the change in the energy depen-
dence of the escape scattering rates.

0
E. Resonance effects

ZIn addition to confined bound states, a quantum well
also produces resonances in the continuum of states with

FIG. 6. The effective matrix element G (q,) as a function of q, and energies above the well walls. These resonances are the con-
E - (Ak ') 2/2m* for the potential well with a depth of 0.8 eV. sequence of interference in the well region due to reflections
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a sequence of wells with increasing depths. The wells are all
0.06 300-A wide and have depths from 0.82 to 0.9 eV. We choose

rather large well depths to make more obvious the resonance
effects. Rate enhancements occur near the resonance condi-

0.04 tion. Since the maxima and minima of the matrix element are
< smeared out by the integration of final state over parallel

momentum components, the scattering rates exhibit the
Z steplike structures shown rather than true maxima and mini-

0.02 ma. The energy of the resonant enhancements decreases as

the well is deepened, in agreement with Eq. (33).
If the well depth, V0, is fixed, changing the well width a

0•0 .0 5.0 10.0 15.0 also changes the energy for resonance with the well. Figure 8
shows the escape rate for scattering from the lowest bound

E 00  state of the well via polar optical phonon emission for a

FIG. 7. Escape rates for scattering out of the wells by polar optical phonon group of wells with the same depth of 1.0 eV but increasing
emission. Thewellwidthsarej00Aandthedepthsare0.80eV (top curve). well width from 100 to 550 A. The oscillation associated
0.82. 0.84. 0.86. 0.88. 0.90. 0.92. 0.94.0.96. and 0.98 eV (bottom curve), with transitions to continuum resonances is evident.
respectively. The curves have the zeros offset on the vertical scale for clarity.
The enhancement in scattering rates near continuum resonances is clearly IV. ASYMMETRIC WELLS
evident.

We now consider escape from quantum wells with an

at the well boundaries. In a square well the resonance condi- asymmetric potential profile. Several asymmetric quantum

tion occurs when wells shown in Figs. 9 (a )-9 ( d) are investigated. All of these
A potential wells have the same total width of D = 300 , and

n - -n (r/xr) = a. n = 1.2,3, (33) maximum depth of V= 0.2 eV. The left side of each well is
2 always an abrupt barrier but the right wall has a different

where a is the well width, i is the deBroglie wavelength in form in each case. We focus on the effect of the asymmetric
the well region, and K' is given by Eq. (31 ). potentials on the escape rate due to polar optical phonon

The matrix element is influenced by these resonant scattering. Again, for simplicity we always choose initial
states and is enhanced at values of E' corresponding to this states which are in the lowest energy bound-state of the well.
condition. Because the wave function amplitude is enhanced We calculate WI,R/L) (E) using Eq. (22). We will denote
by being resonant with the well, oscillations of the matrix this rate as simply W "'/L)(E). Of course, the. -ymmetryin
element with genuine maxima and minima are observed.' " the potential means that WR(E) and W'(E) r .ed no longer
These can be seen in the plot of the effective matrix element be equal.
in Fig. 6. The scattering rates should also exhibit oscillatory Figure 10 depicts the escape rates WL and W for the
structure when additional resonant states are included in the triangular potential shown in Fig. 9 (a). At every energy the
set of accessible final states. For shallow wells, these reso- scattering rate out of the well to the left is greater than the
nance effects are weak. but as the well becomes deeper, the corresponding rate to the right. Recall that "to the right"
resonance effects become stronger. The escape rates of elec- here means "into an eigenstate with a well-defined net cur-
trons scattered from the lowest bound state of a quantum rent in the positive z direction." The asymmetry in the es-
well by polar optical phonon emission are shown in Fig. 7 for cape rates is in this case quite substantial. At some energies it

is greater than 50%, and it is at least 20%. The question

0.06

D

0- .04 ii.< V V7L
liE--4' -4d

0.02 a) b)

CO)

S .0% 5.0 10.0 15.0E/ho V o

E / h ( 0t ...... t ......

FIG, S. Escape rates for scattering out of the wells by polar optical phonon D -W -*. d
emission. The well widths are 100 A (top curve), 150, 200. 250, 300, 350. C) d)
400,450, 500, and 550 A (bottom curve), respectively. Each well is I.O-eV
deep. The curves have the zeros offset on the vertical scale for clarity. FIG. 9. Potential energy profiles for several asymmetric quantum wells.
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FIG. 10. The normalized escape rates for the potential profile shown in Fig. FIG. 12. The normalized escape rates for the potential profile shown in Fig.
9(a). The rates are shown for scatterng into final state with current going 9(c).
to the right ( W") and to the left (W'-).

is varied, thus changing the slope a of the right side of the
raised by this result is whether the asymmetry in the escape well. The slope a represents the steepness of the interface.
rate is caused by the geometrical asymmetry in the well Because wells with different a's have different ground-state
shape itself, or by the difference in abruptness of the two energies we calculate the scattering rate as a function of the
walls, initial kinetic energy of the electron, E,. We quantify the

The stepped potential profile shown in Fig. 9(b) shares asymmetry in the escape rates by defining, somewhat arbi-
the asymmetric nature of the triangular profile but retains trarily,
some of the abruptness of the barriers in the original square a W _ WL(E) - W I (34)
well. The corresponding escape rates for this structure are W W E (E) E = (34)

shown in Fig. 11. Clearly the asymmetry in the escape rates.
while still present. has been considerably reduced. This sug- We calculate the escape rates for this family of wells and plot
gests that it is the difference in the abruptness of the inter- AW/ Was a function of the slope a in Fig. 13. After some

faces which is the key to the preferential scattering out of the initial structure (having to do with continuum resonances)

well in one direction over the other. AW/ W decreases smoothly as the steepness of the right in-

The potential profile in Fig. 9 (c) has a very gentle inter- terface increases. As a goes to infinity, the bottom width d

face on the right edge of the well and an abrupt interface on approaches the top width D the well becomes a square well,

the left. The gradual interface is modeled by a Fermi-type and any asymmetry must disappear.

function, We would like to understand the origin of the direction-
=- I ~al preference illustrated in Fig. 13. The process of scattering

V(z) = 2 V{ [exp( - zD) + I] - -1out of the well to the right has the same initial state as the

The resulting escape rates, shown in Fig. 12, display a large process of scattering out to the left. The scattering Hamilto-

asymmetry. This would seem to confirm the connection nians are the same for the two processes also. The difference
between the abruptness of the interfaces and the preferred in the rates must be due to the difference in final state wave

direction for escape. functions.
In order to investigate this hypothesis. we examine a We can make the following simple argument for why

series of potential wells, shown in Fig. 9(d), with the left one would expect the amplitude of the final "left-going"
wall abrupt and the right wall gradual. The overall width D
is kept constant at 300 A while the width of the well bottom d 50

40

0.08 ~30

0.o6 20

0.0410

0.02 0
0 50 100 150 200

0- 2 6 2 slope a (meV/nm)0 4 8 12 16 20

Ek /-h co FIG. 13. The percent difference between the escape rates for scattenng to
the right and left for wells with profiles as shown in Fig. 9(d). The differ-

FIO. 1I. The normalized escape rates for the potential profile shown in Fig. ence is plotted as a function of the slope of the graded interface. The total
9(b). well width is 300 A, and the maximum depth is 0.2 eV.
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: "F, L 12 & ~ z dF,= f I=T al2 dz

FL

a) F"R

0 40 80 120

Slope a (meV/nm)
" FIG. 16. The integral over the well region of probability density as functions

of the slope a of the graded interface.

two final states, OR and t&', in the well region for the well

shown in Fig. 9(d) with d = 60.A and an energy of 0.01 eV.

We can see that *'" indeed has a much larger amplitude than

FIG. 14. Schematic illustration of the origin of the directional dependeace 0,.
of the escape rates. The final, unbound state is illustrated for the case of net Because the wavefunction of the initial bound state de-

current in the positive direction (a). and net current in the negative direc- cays very fast outside the well region, the integral over the
tion (b). Because of the stronger reflections at the abrupt interface, the fi- well region dominates the matrix element. The rate asymme-
nal-state amplitude in the well region is greater in (b). This r ...Ances the try can therefore be characterized by the difference in the
matrix element for scattering into states with current to the left. trnan terefore e h erwed be i f n nfinal state amplitude over the well region.

To explore further the effect of the well asymmetry on

wave function to be larger than the amplitude of the final final state wavefunction t#L and OR, we define FL and FR as

"right-going" wave function in the well region. The final = 
° 

f (35)

state wave functions are defined by Eqs. (5) and (6). *b' can FL - (Z)dZI2 (35)

be thought of as resulting from a plane wave incident from
the right on the well structure. The wave first hits the gentle, and
graded interface which reflects only a small amount of the F(3

incoming wave. Most of the wave is reflected at the abrupt o.

interface on the left side of the well. This results in a fairly These correspond to the effective matrix elements [Eq.
large amplitude in the well region itself. By contrast, O con- (10) 1 in the rather crude approximation that the initial state
sists of a wave incident from the left, which is strongly re- wavefunction is a constant in the well region and zero else-
flected by the abrupt interface which it encounters first. where, and that the phonon momentum q, is zero. We calcu-
Thus, a smaller amplitude is expected over the well region. late FL and F, for the family of the wells depicted in Fig.
This is illustrated in Fig. 14. In each case, the total reflected 9(d). These wavefunctions are all evaluated at energy
amplitude is the same (one can show rigorously that E; = 0.01 eV. Figure 16 shows FL and F, as a function of a,

TL = TR and RL = R R"'). The difference is whether the the slope of the graded interface. Figure 17 shows the rela-
incoming wave is reflected before or after it reaches the in- tive difference between FL and FR as a function of a. The

side of the well. clear similarity between Figs. 17 and 13 indicates that, in-

In Fig. 15, we show an example of the absolute square of

1.2

-!IZ FL = f ITfLI dz
S0.8 Fit= fIVfRI2 dz

4 'PtL 0 I0,
~0.4 

F

-150 -1 -50 0 50 100 O 0.00 40
40 80 120z (Angstroms) Slope a (meV/nm)

FIG. 15. The absolute square of wavefunctions for two possible unbound
final states for the potential shown in Fig. 9(d). Both states have the same FIG. 17. The relative difference between the integrated probability densities
energy but one carries current to the right and the other cames current to for final states with current in opposite directions as a function f the slope
the left. of the graded interface of the well shown in Fig. 9(d).
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SUMMARY

In this paper we present a method for numencally solving the Schr6dinger equation for the problem of
electron transmission through a quantum device defined on a two-dimensional domain. An important
aspect of our formulation is the treatment of the boundary conditions at the contact-device interfaces.
allowing the problem to be discretized on the device domain only. With the FEM aproach that we employ,
the nature of the potential field does not effect the computational expense ifor smoothly varying fields). We
examine a sample problem ol a symmetric cavity in a wave-guide structure.

INTRODUCTION

Techniques for numerical simulation of electronic devices governed by semiclassical transport
theory are well developed.' However. a great deal of contemporary research is directed toward
the development of a class of semiconductor devices fabricated at a scale where quantum effects
dominate.' In this regime the wave-like nature of the electron must be accounted for, and
simulations must be based on solutions of the time-independent Schr6dinger's equation:

_---- V2 t (x, y, Z) + V(x, y, z)i0 (x.y,:) = EP,(x, y, z)

I The complex wavefunction tb specifies the state of the electron and 1411 2 is interpreted as
a probability density.' The Schr6dingcr equation dcscribcs an electron with an cIective mass II*
which moves in a potential V.

The solutions to the Schrodinger equation are of two types, bound or unbound. depending on
whether the electron is localized in a particular region of space (bound), or delocalized with
a non-zero probability density arbitrarily far away from the structure (unbound). This distinction
is reflected in the boundary conditions for the Schrodinger equation. Bound electrons are
described by a wavefunction which vanishes at infinite distances. The wavefunction for an
unbound electron, by contrast, does not vanish at infinite distances but typically assumes the
form of a travelling wave which carries current. The unbound states are sometimes called
scattering states because they correspond to an electron beam impinging on a potential and being
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scattered outward. For the bound-state problem. the Schrodinger equation becomes an
cigenvalue equation and the numerical solution scheme is fairly straightforward. Both bound and
unbound electron states occur in quantum devices. The bound states represent charge trapped in
the device and the unbound states represent the current passing through the device. We focus here
on the unbound states both because they have the key role of carrying current in devices and
because bound-state solutions present fewer numerical difficulties.

Semiconductor device fabrication technology has until rccently been limited to creating
structures with features that are small in one spatial dimension. This has nevertheless produced
an explosion of new device ideas and interest in electronic behaviour of quantum-scale structures.
This development of ultra-small devices has been greatly facilitated by the insight provided by
solutions to the one-dimensional Schr6dinger equation. The solution tr the case of a simple
trapezoidal-shapcd potential subject to incident plane waves is easily found in terms of Airy
functions. If a potential barrier of arbitrary shape is approximated as piecewise linear, the Airy
function solution along with a transfer matrix approach can be used to find an approximate
solution very efficiently.' Transmission coetficients and currents are then readily determined. This
solution approach. however, is limited to one-dimensional problems.

Recent advances in fabrication and crystal growth techniques5 6 are now making feasible the
creation of structures quantized in two and three spatial dimensions. This has created the need for
more sophisticated modelling capabilities, both to understand device behaviour and to guide the
invention of new devices. For the current carrying (unbound) states, the use of standard numerical
solution procedures, such as finite differences or finite elements which are commonly employed in
problems of higher spatial dimensions, is hampered by the extended nature of the wavefuntion. 78

This is a reflection of the fact that a quantum device is an open system. i.e. a problem with at least
some of the boundary conditions at infinity. In this paper we give particular attention to the
treatment of the conditions at the interface of the device and the contacts. Boundary conditions
are developed which account properly for reflection and transmission of waves. Thus. we are ableto cast the problem as a boundary value problem on the domain described by the boundary of the

device. We then develop a finite element solution strategy for the problem of electron
transmission through a potential of arbitrary shape. We give results for the case of a resonant
cavity, and examine the behaviour of the transmission coefficient versus energy curve as we vary
the device geometry.U

PROBLEM STATEMENT3In this paper we consider the transmission of electrons through a quantum structure defined by
a two-dimensional domain, as shown schematically in Figure I. We call 02 the device domain and
Q1 L and W2 the left and right contacts respectively. For simplicity in presentation both contacts
have width d and lie on the x, axis. The analysis following is not restricted to this geometry,
however.

Since 12L extends to x, - c and W2 extends to x, = + -m we have a so-called open problem.
The form of the complex wavefunction is known in L and W2'. however, and thus we will reduce
the problem to a boundary value problem on the device domain L Following the determination
of the wavefunctton on il the transmission coefficient can be calculated at the device-right
contact interface.

Since we anticipate a finite element method (FEM) solution we find it convenient to consider
the complex wavefunction as a real-valued vector quantity, * = (q1, 0,2)T

, where *I and * 2 are
the real and imaginary parts of the wavefunction respectively. We first give the classic or strong

I ...
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IY
V L1 "- d "

0 L

Figure I. Georrictry of the transmission proiem. Within the revion £Q u 'ti? the potential V is finite. Outside this region
the polenlial is intinue

tatement of the governing equations: Find *e C(0), 4LeCC (.(L), *11e C2( QR) such that

- V2 *(x) + ,(x) * (x) = E * (x), x C-

- V2 TL(XJ _ EJ/L(X). XGflL

- V2t9(X) =E4,(x), X C 11

i ' ' = ''" *L" on F,-- x:x, = 0.0 < x, d('

- on F, = x:x =LO0<x,<dl

= 0 on f-3 = - +r)

= 0on x, = 0, x, = d, x < 03 t=O on x, =O, x, =d. x, > L

iL bounded as x, ---,

V, bounded as x. ---

In the above *L t, s are the complex wavefunctions in fIL and !'R respectively, x = . x, r is
a vector containing the Cartesian co-ordinates of a point. Vx) is the real-valued potential
assumed to be a continuous, bounded function on Q, E is the total energy and Ki is the boundary
o (2. Also. for convenience the factor hi/2m" is subsumed in the definitions of V(x) and E.

The solution ol Schrodinger s equation in the contacts satisfying the boundedness conditions

above consists of travelling harmonic waves and standing, exponentially decaying waves. These
latter modes are herein referred to as evanescent modes. We assume a single incoming mode from
XI = -Y, and no incoming waves from x, = + *. Again, this latter assumption is primarily for
simplicity in presentation and the analysis is easily extended to allow multiple mode input from
either direction. The solution of Schrodinger's equation in the contacts satisfying the conditions
above has the following form:

R.Lx) = , sin mrxAe sin 'x l,

Rm,(X), Y R. <,a (si 1- -)b s+._~ +~e'" \d, id dd-

= V R,(x1 )a. sin + s - 2)

Id
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where

Rxt) = [cosik~x,) - sin(k.x,) (3)R"xl sinlk,,x,) cos(k, ) I3

k, IJE (4)

2. =(a.,. a., ) (5)

b, (b,,I b.2)T (6)

A. (A,,. A-2n) (7)

The solutions are combinations of travelling waves which are oscillatory in x, and evanescent
modes which decay exponentially away from the device region. We choose to define the
wavevector k, so that it is a real quantity for both oscillatory and exponential waves. The number
of modes which represent travelling waves is given by

N = max n, such that E > ( d) . (8)

Thus the total energy as well as the contact geometry determines the number of current carrying
modes reflected and transmitted. As the energy increases, more modes become travelling modes
which carry current.

The vector A. represents the amplitude of the incoming mode. Specifying A. is equivalent to
specifying the amplitude and complex phase of the incoming wave.

We now use the continuity of the wavefunctions at the interfaces r1, r2 and the orthogonality
of the sine functions to express the constants, b., a. in terms of the wavefunction * on [, and 1-2,
i.e.

=jo 4(°, x2 ) sin(--l) dx2 - A,"6 (9)

2 dIRRL)4(L.x-s .sin- -dx. n<N (10)

2eA,,  fd n~.
a m -a= A *(4x2) siny-X-Jdxz, n N (>,)

where 6.. is the Kronecker delta and we have used R,(O) i. the identity matmx. Taking the

derivative of equations (1) and (3) with respect to x, and using the continuity of the normal
derivative of * at the interfaces yields

0.10,X 2) =- k.Q.O)A. sin Q-)) kAO T() b, sin d

+ i k,,sin MX)(12)
1"N' n.,.e-" (" x- ) (d].,I*(L,x2) - k. .(L)Ia. sin k,-' "si d 13
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where [si nik,,xv) costk~x,)1
cosik.9xt) sinlk.x 1)j

Now. using equations 9) to (l1) in equations 112) and (13) allows us to write formally,

a 14(O, x,) = fL(*(O, X,), X2 ) (14)

£d ',(L, x ,) = fR(*,(L x 2 ), x,) (15)

where

IfL(*(O X,)X,) .. (O)A, sin (~rx)
I o,.,Y, (O)T  n dx - A] sin .0d)

Ik k k *(0, x.)sin dx ]sin[( L-) (16)

and

f (4o (L. x.,x=- .X k.Q.(L) r Lj Rr{ L) q# L, x ) sin d dx2 ]sin--dIe -, d 1-]x . t r n x .
x, inL .d ,. (- ) dx, sin d (17)ORN+ f N d

Equations 114) and (15) are the boundary conditions at the device-contact interfaces which allow

us to restate the boundary value problem on the device domain only. Note that these boundary

conditions are a generalization of the usual mixed or third-type boundary condition relating the

primary unknown to its normal derivative on the boundary. The normal derivative of * is not
directly related to *4, but rather to a superposition of Fourier components of *. The boundary
condition has a non-local character in that to apply it at any one point on the boundary requires
a knowledge of the wavefunction over the entire boundary.

We can now restate the boundary value problem on the domain Ql Find *eCz'(Q) such that

- V" *(x) + V(x%) (%) = E (x), x e

4 0 on r 3

and such that the boundary conditions given by equations (14) and (15) are satisfied.

Prior to stating a variational equivalent of the above problem we define some notation. Let

3l){v: . [(\..)2 + ( (V-E)vj dA<co, v=OonF}

and we say te(H (fl))z if iw,, 0 2 e H3(fl). Also. let

I Fa/axt 0
0 alax, Ott

la, 02
L /_ x 0 /X2_

I
I
I
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We now give a weak variational problem equivalent to the above problem: Find C-I Hl 34)),

such that

(V+, V*I) + * ,(V - E)qM) f (', f )r2 - , fL)r,, VIe(H3(fQ))2  (18)

I where

(V+, V10) = V+T V4dA

(+,(V- E)*)= (V- E)4rT4dA

I 4,fR)r, = '(L, x, I flt( 4 (L. x, ). x,dx

S(+ fLr, = ( fL( (0, X,),

The equivalence of the two problems is shown by integrating the gradient term. (V+. V*'). by
parts and then using the fact that + is an arbitrary element of (H3 ((')) .

FEM SOLUTION ALGORITHM

Given a regular discretization of CL we express the FEM approximation to 4# on this mesh as

* (x) = N(x)u

U =0(i1(x,), 0 2(x1), 0(x), 2 (x2). . i.. p,(x,). i02(x.))T

N(x) is the 2 x 2M matrix of global shape functions.

0, 0(x), 0, 02(4 .. O=K)

I means the co-ordinates of thejth nodal point. 0,(x) is the global shape function associated with
node i and M is the number of nodes in il u F, u r.
We can express the gradient of * as

I V4' - B(x)u,

where B(x) is a matrix containing derivatives of the shape functions. Thus the left hand side of the

variational equation can be written

(V+, V4,) + (, (V- E)4') - bT( +(BTB +(V- E)NTN)dA)u

I - irAu (19)

This relation defines the 'stiffness' matrix A. We now give a fairly detailed treatment of the
boundary contributions. Assume that there are M, nodes on F, and M, nodes on F. Let uj be
the vector of length 2M, which is the restriction of u to F, and let N,(x 2) e the 2 x 2M, matmx of
shape functions such that

-(0, x2) - N1(x2)u (20)

I
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Using the FEM approximation to * with equation (10), (11) and (13) allows us to write
fR IT 2k., NrT.

whee (,f(R) =t-a Z N,..,Q,(L)R,(L)rN-,,± ' 2kN, N 2 ,,)u,. 2 - Y2 N + k X

wheren=dd

:= N:(x,) sin\, dx.

Note that the total number of modes is truncated at a finite number. 1. The required value of

I must be determined experimentally. In general we have found that six or seven modes above

N are sufficient. Now note that

Q.(xR.(x = D - [- 0

therefore,

IRN N )2k(N Df )r+ 7 N2 ,,DN2,,+ N 2kN U2

I L i k e w i s e . -

-

, L )r, =1 L 
k,,N r ,D rA . + ( 2N ,, D N ,, + f 3 "N nN 

ut

I 6T(p, + CIu1 )

We now define 2M x 2M matrices t, it2 and a vector 0. of length M such that

uiTCIuI - jrj (22)

r at (23)

Thus the discrete form of the variational problem is

OTAu = dr(0. - (it, + C )u)

or since the elements of d are arbitrary,

(A + ( + C,)u =,,(24)

Note that the matrices It, and C, are not explicitly formed. equations (22) and (23) simply
represent the assembly process. Also note that the real and imaginary parts of the wavefunction
are coupled only through the boundary conditions, equations (14) and (15), which, in the FEM
procedure are effected by the matrices C, and C2 .These matrices are not symmetric and thus the
final system to be solved is unsymmetric.

TRANSMISSION COEFFICIENT
The current in f0l or W? due to electron transmission is (ignoring a multiplicative constant which
does not effect the transmission coefficientl

I J = (d - (, XI

I
I
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where 41 is the complex wave function. 0 = #ti + ii.,. and t* is the complex conjugate of1. Using

equation 3) we can express the current in the region 0R as follows:
N

jR= k.ara.

Note that the evanescent modes in the contacts do not contribute to the current. if we calculate
the incoming current (i.e. ignoring the reflected modes) in 0L we get from equation 1I)

J = kATA.

Therefore the transmission coefficient is
jR 1 N

T(E)=j T J k.,ara,,
0 JO..

where T(E) indicates the energy E is used as a parameter. Using equations I10) and 121) we can
express T(E) in terms of the nodal values of 0 on the interface F, i.e.

T(E) = (-L)u T( k.N'.N 2.)u, (25)

Thus after the wavefunction is determined on the device domain. i.e. after equation 24) is solved.
the transmission coefficient is readily computed from equation (25).

Note that it only requires a modification of the vector i to include a superposition of incoming
modes, which involves only minor computation.

SAMPLE PROBLEM

To illustratc our solution procedurm we will analyse the resonant cavity shown in Figure 2.
Although inclusion of an arbitrary potential in the device is an easy matter. we present the
resonant cavity results simply to restmct the number of parameters. We assume only mode one is
incoming from the left and we take A ,I = I. A 12 = 0. For all simulations the effective mass. m*. is
taken to be 005 m.. Furthermore. grids for cuch simulation were generated using square. bilincar
clcmcnts. 5 A on a side. We found all results were sufficiently converged using this mesh for
graphical purposes.

Figure 3 shows transmission coefficient versus energy curves for a family of devices. For all
cases the width of the contacts. d. and the length of the device, L are taken to be 100 The

transmission coefficient curves shown are for device widths. D. varying from 200 to 250 A. The
minima in these curves correspond to bound states in the cavity. For this simple device geometry
the device bound-state energies are easily determined. At these energies the electron is trapped in
the device and this explains the resulting reduction in the value of the transmission coefficient. As
the device width. D. is increased we expect the energy levels of the bound states in the cavity to
decrease. We see this effect exhibited by a shift to the left of the minima. In general. the more
separated the bound state energies the broader the band over which full transmission. or close to
full transmission, occurs.

It should be noted that the occurrence of minima at energies of bound states is a unique feature.
of the two-dimensional problem. In one dimension, it is more typical to see transmission maxima
associated with bound-state, or more precisely. quasibound-state resonance& The characteristic
sharp minima and broad peaks have been noted by Sols and co-workerso in their work on the

stub-tuner transistor.

I
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0 d

L&

Figure 2. Geometry for the sample problem of the resonant cavity

D. 2001
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0 0 0.2 0.4 0.6
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Figure 3. The transmission coefficient versus energy for the resonant cavity shown in Figure 2

Figure 4 shows a plot of the real or the imaginary part of the wavefunction. for the 200 A wide
cavity at an energy of 0-43 eV. which corresponds to the first excited bound state of the cavity.
For energics corresponding to the bound states of the cavity the real and the imaginary parts of
the wavefunction arc Identical in shape and simply scale: thus we show only one plot for this case.
The wavefuntion at this energy is essentially a standing wave corresponding to the bound-state
eigenfunction.

It is interesting to note the shape of the wavefunction at the exit boundary. This tells us the
form of the wavefunction in the contact. Since there is basically no transmission at 0.43 eV. the
solution should contain almost no participation of the travelling modes in the contact. For this
simulation the first evanescent mode is the third mode (since N = I and the problem is
symmetricl and the third mode is precisely the shape which is predominant at this boundary.
Thus the wavefuncuon is essentially an evanescent mode in the contact. Higher modes have little
participation. Although we infer the shape of the wavefunction in the contact from its shape at the
exit boundary, we could easily determine the explicit expression for ; in the contact since the
amplitudes of the wave forms are easily computed as shown in equation (25). However, we are
primarily interested in its behaviour in the device and at the contact interface.

Figures 5 and 6 show the real and imaginary parts respectively of the wavefunction at an cncrgy
of 031 eV. This energy corresponds to almost full transmission (T(E) = (0 ). Note that the

I
I
I
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Figure 4. rhe waveluntion for transmmson through the resonant cavity with D = 200 A at an energy of 0-43 eV

Figure 5. The real pan of the wavetuncuon for transuumon through the resonant cavity with D - 200 A at an energy of
031 eV

I -

Filgure 6. The imaginary part of the wavefuncton for tranmfmirmon through th resonant cavity with D -200 at an
energ of 0.31 eV



NUMERICAL SIMULATION OF ELECTRON TRANSMISSION 1537

wavefunctions are basicaly travelling waves in the cavity. We also see in this case that the shape of
mode one, a travelling wave. is predominant at the boundary. Thus in the contact we have a mode
one travelling wave with little effect of the evanescent modes close to the device for this case ol
near full transmission. The role of the evanescent modes in the contacts becomes important in
multiple devices if the devices are 'close* together.

CONCLUSION

In this paper we have presented a method for numerically solving the problem of electron
transmission through a two-dimensional quantum device. The boundary conditions at the
ccnact-device interfaces given by equations J14)-(17) are important in that they allow the
problem to be discretized on the device domain only. With the FEM approach that we employ.
the nature of the potential field does not affect the computational expense (for smoothly varying
fields). Also we can incorporate more contacts and multiple mode inputs with little additional
expense. Such studies are presently underway. An extension of our formulation to allow an
efficient analysis of multiple devices is also being studied.

This work was supported by the Air Force Office of Scientific Research under grant number
AFOSR-88-O096.
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A numerical algorithm for the solution of the two-dimensional effective mass Schrbdinger
equation for current-carrying states is developed. Boundary conditions appropriate for such
states are developed and a solution algorithm constructed that is based on the finite element
method. The utility of the technique is illustrated by solving problems relevant to submicron
semiconductor quantum device structures.

I. INTRODUCTION We formulate the boundary conditions appropriate for

Recent advances in submicron lithography have made it the numerical solution of the Schrbdinger equation for cur-

possible to create very small structures in which electrons in rent-carrying states on a two-dimensional domain. We em-

the two-dimensional electron gas formed at a semiconductor ploy these boundary conditions in developing a numerical

heterostructure interface are further confined by metal solution algorithm based on the finite element method. We

gates. A negative voltage applied to the gate depletes elec- call this the quantum transmitting boundary method

trons in the region beneath the gate. Several device struc- (QTBM). In Ref. 6, we formulated the technique for the

tures have been proposed and realized using this scheme.-s rather restricted case of two colinear leads with infinite

For sufficiently small scales, electrons in such structures are square-well cross sections and identical widths. Here we de-

ballistic and coherent over the entire device region. For velop the completely general formulation, capable of solving

many purposes, electronic transport in this regime is gov- the general problem of the transmission and reflection prop-

erned by the effective-mass Schrddinger equation. Under- erties of a region with an arbitrary potential, including mul-

standing and modeling the performance of these device tiple multimoded input leads of arbitrary cross section and

structures requires solving the two-dimensional Schrbdinger orientation. The QTBM yields not only the transmission and

equation. reflection coefficients, but the full wave function in the de-

Several well-established techniques have been employed vice region.

for obtaining numerical solutions of the two-dimensional Section II contains the formal statement of the problem

Schrbdinger equation for bound states. Bound-state solu- and the development of the boundary conditions for each

tions, however, are not of primary interest in understanding lead. This section is quite general and does not depend on

quantum devices. States which carry current, sometimes any particular numerical technique. The numerical algo-

called "scattering states" are more important in understand- rithm is developed in Sec. III. Section III C contains a de-

ing current flow through small coherent regions. In one di- scription of the basic features of the QTBM algorithm and a

mension, the current carrying states can be solved for rather comparison with other techniques. In Sec. IV we present a

straightforwardly because the Schrodinger equation can be few short examples of the application of the QTBM to some

Nimply integrated from one side of the device to the other. In interesting geometries for quantum structures. Section V

two dimensions the problem is more difficult. states our conclusions.

Current-carrying states are composed of solutions in a
device region (the scattering region) and solutions that ex- 11. FORMULATION OF THE BOUNDARY CONDMONS
tend to infinity along the input and output leads. Because of
the regularity of the potential in the leads, the form of the A. Problem statement
solution is known in the lead regions. This can usually be The region of interest is partitioned into a "device" re-

expressed as a sum of traveling and evanescent modes in the gion f1, and several lead regions, ill, fl2 ... fi,, which ex-

leads. The complex amplitudes of each of these modes is tend to infinity. We want to solve the two-dimensional effec-
unknown, however. The ampitudes are a result of the prob- tive-mass Schr6dinger equation on fi-fioUfll
lem's solutions, commonly expressed in terms of transmis- Ufn2... U fa. The boundary of the region 91o we denote r.
sion and reflection coefficients. Therefore, although the The boundary between a lead region, 11,, and the device re-

asymptotic form of the solution may be known, the values of gion, no, we call r. This lead boundary can, without loss of
the wave function and its derivative on a boundary region are generality, be taken to be a straight line. The rest of the

only known in terms of coefficients which are to be deter- boundary F, which is not a lead boundary, is denoted ro (see
mined. Numerical solution requires knowledge of the wave Fig. 1).
function or its derivative on some boundary region. In one The problem we wish to solve can be stated as follows:
dimension, this boundary value problem can be treated as an Given: The total energy E, the potential energy in each
initial value problem using Numerov-type methods. In two region, V (xy), i = 0, 1,2...,n, and the complex amplitudes

dimensions it cannot, of each incoming mode in each lead,
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FIG I The problem geometry.

Find: FIG. 2. Local coordinate system for lead i.

0 eC2(f 0),'0'EC2(n1).and 16E C 2(fl,
such that

-(4'/2m*) V0, (xy) + V (xy) 0,(xy) Here d, is the perpendicular width of the lead. The potential

EO, xy) (XYE ~jin the lead is assumed to vary only across the lead:

anddo= i o r, 2) For the simple case of square-well leads, V, (T)=0.

Because the potential in the leads is independent of 71,
V~or V~-h r, ofln , (3) the Schr~iinger equation in the leads separates and we can

0 = 0 on ro flQ- r" (4 write the general solution in lead i as

iN'

, . N

0,=o n (io@C M(an, - r... (5) Ib :(.)

-I

We will develop a solution algorithm valid for any po- m- N*+l
tential V(x, y) in the device region. The condition that 0. where X' ( ) is the mth e igenstate of the one-dimensional
vanish on the boundary ro need not be restrictive in that the Schr~dinger equation,
boundary can always be placed far enough from the active
device region that the wave function has vanishingly small e(as2m*) d+ V (,)=
amplitude on the boundary. The device region must, in this £'(
sense. contain the wave function within flB except along the The a u,'s are the coefficients of the incoming traveling-wave

ladboundries ,ostates and are an input to the problem. N'is the number ofWe require that the potential (x, y) in each lead be traveling-wave modes allowed in lead i. The b,'s in the first
independent of the distance along the lead. This is what we sum are the coefficients of outgoing traveling-wave states.
mean by leads-channels that contain no longitudinal struc-, i i
ture, although they may have a complicated cross section. In Thesn t e ecnd) sares.(he oefficients e sce
the next section we consider the form of the solutions in the (eponntay d ecan stateds e cofie pbaem
leads themselves. Our goal is to formulate a boundary condi- unwns We n cth e m the eigenstate a tare ofthenobmal
tion on the lead boundaries F, that will allow us to specify solutine ca tht or
the incoming flux in each lead and solve the Schrtdinger [X' (12)
equation only in the device region fl, to I

B. Solution in the wads For in finite square-well leads,

By requiring the leads tobe uniform along their lengths X".(', = 42-1d, sin[ (mth d)l. (13)

we can separate the problem in the lead regions into coupled The wave vector for the mth mode in the ith lead is given by
one-dimensional problems. We define alocal coordinate sys- k'm =j(2m*1*2)(E-E,,)I. (14)
tem in each lead iiM

independn o i te din aong the leThe number of traveling waves Nof is the maximum m such

such that is parallel to the lead walls and points down the
lead in the direction away from ha (see Fig. 2). The direc- C. Boundary conditions at the lead Interfaces
tion is perpendicular to s and the boundary between f, and At the boundary between the device region and lead i we
t 0 can be written require both continuity of the wave function and the normal

lead t ( esl e(Od,),q i= 0}. (8) derivative [Eqs. (2) and (3)be . The condition on the deriva-
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tive can be written Equation (20) defines the functional f and is the
boundary condition we require in order to formulate the

Vibo(r)'hr,= Vb(r).hr, onl problem for the current-carrying states as a boundary-value
a ~ ~problem. Note that Eq. (20) relates the value of the wave

S77i (15) function's normal derivative at a particular point to the val-
ues of the wave function at all the other points along the

We calculate the normal derivative from the known form of boundary.
the wave function given by Eq. (10):

, -+D. Weak variational form of the SchrOdinger equation

- ,= -7 In this section we develop the weak variational form7 of
the Schr6dinger equation in a way suitable for numerical

k ',. b 'm " (4,)- (16) discretization. Our goal is to discretize the wave function
.. N+ .i only in the device region l1, and apply suitable boundary

We can evaluate the b ,, 's by using the orthogonality of conditions to match wave function and derivative to the so-
the y's at 7i = 0: lution in the leads. We begin with the time-independent

d Schr6dinger equation for the wave function ifo in the device
i b_ =J X '( ',) b(77i =0, j)d, -a_. (17) region:

0- (A ,/2m*) V2 ko(x, y) + V(x, y) b0 (X, y) = Eo(X, y).
So (21)

b , ik' ( This is multiplied by an arbitrary test function and inte-
a37i, 1= 0 X=I grated over fl,:

X 2a'_ + ym,( 7),b(, .. ,)d4, - jq Wf V 2 2r+J (V-E)00d2r=O. (22)

-- kX', (4,X ) The test function is chosen so that it obeys the same essential
m. N + I boundary conditions as does ibo, i.e., = 0 on 70 .

X wf ' (4,) bO (7i = 0, j )d4,). (18) Using Green's first identity we have,

The derivative boundary condition then becomes f V2 d r - V W.V d 2r + f (V-Ar )dr,

Voo(r)'hr =f, ,b, (7, = 04,i)] (23)

' 1 (4)so the Schr6dinger equation becomes

= *'f(4
--2a",, + .v,,)b(,=O,4'.)d.1) 2- Vb. odr J.... -E)b~

- k',, ,(4.,) =2-" (V.)d. (24)
1-N+ I The integration around the boundary F must be performed

X TF X"M ( o ( 0i, = 0, 4.)d4.1). (19) in a counterclockwise direction. Since is zero on Fo, the
0 right-hand side can be rewritten as an explicit sum over these

We can now employ Eq. (2), the continuity of the wave contact regions:
function itself, and replace t, 'son the right-hand side by 0 's _L f V VO dr+f (V-E)O°d2r
since they are evaluated on ly on the boundary. We then ob- - V ,,
tain a boundary condition on ro and its normal derivative: (25)

---[= X kj,,4,

E. The reformulated problem

x (- 2a. + fi" (4.)bo( , = 0,4, )d) The original problem statement can now be cast in the
0 form of a weak variational statement with the boundary con-

- X k ,,, (,) ditions given by Eq. (20). The geometry is the same illustrat-

rn-N,.~ed in Fig. 1.
Given: The energy E, the potential energy V(r), and the

u ()o(, =0,')d (20) set {a',}, where each a,, is the complex amplitude of the
S ' incoming wave in the mth mode of the ith lead.
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Find: Ik(r) for r E fl such that ( . (r) d , (r) . , (r)(
_"' V -Vtbo d2r + ( V- E) o(d-rd,(946r.. ()

2m J .. is the (2 X m) matrix of derivatives of the global shape func-
'h ,f j,~d,(6 ions.

m* bf [4,o]dr,, (26) We can make similar approximate expansions for the

where test function b:

N' 5=i-N (34)
f,[k'o] = = = ,  (35)

(/yd, where ii is the vector of nodal values of b.
X( - 2a, + . () bo( i = 0, )d4, Inserting these approximate expansions into the Schro-

il dinger equation yields,

- ,,k,(4,) ifr -h Br(r)B(r)d2 u+iir
m -N'+ I ,2m*

(mX X ( ,)t0 (71i=0,,)d4,), (27) x [V(r) -EINr (r)N(r)d2- u

and is an arbitrary test function which is zero on [r. f (36)
2m I (36)

Ill. NUMERICAL SOLUTION For the moment we leave the right-hand side in an un-
A. Finite element discretization discretized form. We define the (m X m) matrices K, T, and

V as follows:
The discretization is on a mesh with m nodal points,

rr,,....r,. Associated with each nodal point, r,, is a global -(37)
shape function 0, (r) which has the property that T - B(r)B(r)dr(3n, 2m*0, (r,) = 6i.j. (28) v-fa [ V(r)-E ]Nr(r)N(r)d 2r. (38)

The wave function can be approximately expanded in the
basis of these shape functions, The (partially) discretized Schr6dinger equation is then,

bo(x) I 0(r,)O, (r) = 2 ut, (r) (29) i(T+v)tt=-tL (f (r)f£. 4, 0o(0,t )ldr).

or (39)

0,(x) = N(r).u, (30) The discretization of the right-hand-side boundary term
where N (r) is the (1 x m) matrix of global shape functions, proceeds as follows.

=[Nr) r)r (31) beLet u, be the projection ofu onto F,. Let the length of u,
N(r) =beM, thenumberofnodal pointson theboundary (see Fig.

and u is the (m X 1) matrix of the (unknown) nodal values 3). Let N, (4,) be the ( 1 x Mi ) matrix of global shape func-
of tb. Similarly, we can approximate the gradient of the wave tions, such that
function by an expansion on this basis set, = 0(i = 0,4,) = N, (4,)*u. (40)

&x Further, define a (I XM,) matrix N,. by
V bo(r) = o = B(r0%u, (32) N, -E r'

N-' m J (4, ()N, (4,)d4," (41)

where The boundary term then can be written,

r N2m- (f , (r,(r,u)dr = 2- i[ -2ia'k. Nr(4,)x'(4,)d4,

+~ (ik Nr( , )X', (4)d(N (i)% (4,)d, u,

S-- k , N ( " X"(,)d , N, (t,)X' ( ,)d , u, (2
- N" + I (42)
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known nodal values of b in terms of the known quantities T,
V. C, and P.

B. Algorithm summary
We summarize the numerical solution algorithm as fol-

lows.
(i) Discretize the device region f,) on a mesh r,,

i = 1,2..n. The potential energy V(x, y) should be known
at least on these nodal points.

00 Choose a set of basis functions, [ ix. y)]. which
obey Eq. (28).

(iii) Construct the (m X m) matrix T using Eq. (37) or
2

FIG. 3. Discretization of the interior region in the neighborhood of lead i. T,.j f [d, i (r)$ Cr) - ay, (r)03,6j (r) ] d 2r.

(52)

Now using the definition of N,._, we obtain, (iv) Construct the (m x m) matrix V using Eq. (38) or
1 - f ( r )f j (r'u~d r 2*, V," =fn[ V(r) - E](r) 0, (r) d 2r. (53)

2m* G, .'
f"2 (v) For each lead i, calculate the transverse eigenfunc-

2m* tions X" ( 7). Using the basis functions associated with M,nodal points on the lead boundary r,, calculate the vector

-2ia ,,k,, N/r N,, , ,. N,(vi) Using N.(,. the given values of the a,, 's, and k '.'s

/, \ 1 ]from Eq. (14) calculate the M,-by-M, matrix C, and the
- k ,NN,.ju, 1. (43) vector Pi for each lead using Es. (45) and (44k. Embed

,N' n+ / these into the (m Xm) matrix C and the vector P (this is
Define a vector P, and matrix C, as usually done automatically in the assembly process).

Z N' (vii) Solve the system of linear equationsSPi = _ _ Y 2ia, k, N r
T (44)

2m , ia, " "N (T+V+C)u=P (54)

and for the unknown nodal values of the wave function

_i i U or) (55)
,- rn-I Because T + V + C is a sparse banded matrix, it is not neces-

* k Nr ,, i~msary to store the entire (m X m) complex array. We have

2m N e., (45) used both band-storage and profile-storage schemes. Solu-
e b r tm cn thn btion routines are also available which take advantage of the

The boundary term can then be written as sparse character of the matrix.7

(viii) From the calculated wave function, computefirj p, _ C, us). (46) transmission coefficients, currents, or other quantities of in-

This can be further simplified if we define the embedded terest.
matrices C and P by Equation (45) contains an infinite sum over all possiblem e Cevanescent modes. In practice this sum must be truncated to

Xire,u, = i u (47) a value less than half the number of nodal points on the lead
boundary. Usually a much smaller number of modes is suffi-

and cient for convergence. No general rule applies, however, be-
cause the number of evanescent modes excited depends on

fiirp, = jP. (48) thedetailsofV(x,y) in thedevice region. If Vvaries rapidly,
more evanescent modes need to be included in the sum.

The discretized Schr6dinger equation then becomes
iir(T + V)u = fir ^ - Cu (49) C. Features of the algorithm

or The principle features of the QTBM are as follows:
(i) The current-carrying states are solved for directly,ir(T + V + C)u = air P. (50) yielding the wave function over the entire problem domain.

Since ii is arbitrary, this reduces to simply Any other physical quantities of interest, e.g., the electron
- P density, current distribution, or transmission coefficients,(T + V + C)u= P. (51) can then be extracted from the knowledge of the wave func-

This is simply a set of m algebraic equations for the m un- tion. In particular, because the electron density is immedi-

6357 J. Appi. Phys., Vol. 67, No. 10, 15 May 1990 C. S. Lentmnd D. J. Kirkner 6357



ately available, extension of the method to include Poisson
self-consistency should be straightforward.

(ii) Solution times are independent of the shape of
V(x. y) in the device region. Other than tabulating the val-
ues of the potential at nodal points, no additional computa-
tions are required to handle an arbitrary V(x. y) than to
handle a flat potential. a)

(iii) Multiple input and output leads are included nat-
urally. Leads can have any size and extend away from the
device region in any direction. Nonsquare-weil leads are also

handled simply.
(iv) For a device region with NV nodal points, the algo-

rithm requires the solution of one 2N, X 2N, system of linear
equations for the 2N, unknown nodal values of the real and b)
imaginary parts of the wave function.

(v) The algorithm is easy to implement using standard
finite element programs. The current-carrying boundaries
can be included as simply another element type. The new
element subroutine associated with a boundary element
computes C and P. The normal assembly process then per- I i

forms the embedding of these into C and P.
Presently, the most popular way of dealing with cur-

rent-carrying states is to solve the Dyson equation on a tight- o
binding lattice for the real-space Green function.' This
method is easiest to employ if the solution domains are very 2 o.5o

regular and the exact Green function is known in each of
several connected regions. It is considerably more costly for 0.o

arbitrary shapes and potentials. More important, it does not
yield the wave function itself in the device region. The con- C)
siderable physical insight which can be gained by having the 0. 0.0 1.0 2 3.0 ... . ... .0 9.0

full function is lost. Because of this, it may prove difficult to E/E,
develop self-consistent solutions of the Schrddinger and
Poisson equations. It should be noted that the Green func- FIG. 4. Transmission through a rectangular cavity in a quantum wave-
tion mayveqaton. atago e noxtendinga the uren feth- guide. The real part of a typical wavefunction in a region with high trans-
tion's may have an advantage in extending the current meth- mission is shown in (a) The scattering geometry is shown in (b) which also

ods to include dissipation, techniques based on the Schr6- illustrates the region (dark) over which the wave function is calculated.

dinger equation will probably never be able to accomplish. The transmission coefficient as a function of energy for the case of current

Recently Frohne. McLennan, and Datta developed a incident in the lowest mode of the waveguide is shown in (c). The energy is

normalized to E,, the minimum energy for traveling waves to exist in the
solution algorithm based on the boundary element method.8  leads.
Like the QTBM. this method is based on the real-space
Schr6dinger equation and yields the full wave function over
the entire device domain. Its most important limitation is function for a state with an incident wave coming from the
that it requires that the full set of eigenfunctions be known left, in the lowest mode of the waveguide. is solved for over
for a region which includes the device region, but may be the region of the cavity (the device region in this case) for
larger and have more regular boundaries. It is particularly various values of the energy E. In this example we take L /
iil-equipped to handle variations of the potential within the d = l and W/d = 2. Figure 4(a) shows a typical wave func-
device region, i.e., situations with V(x, y) #60 over the device tion obtained from the QTBM calculation. The transmission
region because exact eigenfunctions are then difficult to ob- coefficient as a function of energy is shown in Fig. 5 (c). The
tain at the outset. energy scale is normalized to E, the lowest transverse exci-

tation of the waveguide. For energies lower the Ej, only
evanescent states can occur in the channel. The minima in

IV. EXAMPLES the transmission coefficient occur near the energies of bound

We present two examples of the QTBM applied to fairly states of the cavity. Transmission maxima are also observed.

simple two-dimensional geometries. The first is a resonant A discussion of the precise nature of these resonances will be

cavity in a quantum waveguide. The geometry is illustrated given elsewhere.9

in Fig. 4(b). For simplicity we assume here that the poten- As a second example we consider transmission through

tial is zero inside the leads and in the interior of the cavity, a circular arc in a quantum waveguide. This problem is of

Outside the leads and cavity the potential is taken to be infi- interest if true quantum-waveguide devices are to be con-

nite. The cavity has width Wand length (in the direction of nected in more than a linear arrangement. The width of the

current flow) L. The width of both leads is d. The wave waveguide is d and the central radius of curvature is r.
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nonrectilinear geometries. The elements used in this calcula-
tion are not rectangular but are formed by generating a regu-
lar mesh in p and 0, the cylindrical coordinates natural for
this problem.

Both the resonant cavity and the circular arc problems
will be treated at greater length elsewhere.' Transmission

" through a double cavity is discussed in Ref. 10. The exam-
pies here serve to illustrate the power of the QTBM ap-

/...d---. proach. The circular arc geometry illustrates how easily
nonrectilinear boundaries can be handled. In each case, a

a) more complicated interior potential can easily be added.

V. CONCLUSIONS

1.00 We have developed a new technique for calculating nu-
T,  merically the solutions of the two-dimensional Schr6dinger

0.75 T,, equation for current-carrying states. The quantum transmit-
o ting boundary method is based on our formulation of the

boundary conditions appropriate for such states and an im-
0.50 plementation of the finite element method. The technique is
.2 T2  general enough to handle arbitrarily shaped device regions
0.2 -with complicated internal potentials. No a priori assump-

T13  tions about the solution in the device region are required.
b) 00 1. 2.0 2.5 3.0 3 Multiple contact leads with differing widths and various di-

kd/h rections are handled naturally by the technique. We have
demonstrated its utility in two cases of interest for quantum-FIG. 5. A circular bend in a quantum channel. The geometry is shown in waveguide devices.

(a). The transmission coefficient for current incident in the lowest mode of
the channel is displayed in (b) when rid = 0.7. The transmission from the 'F. Sols, M ..:i. U. Ravaioli, and K. Hess. AppI. Phys. Ltt. 54. 350
first mode into the first three modes is plotted vs kd/r where k = v 2mE/i. (199)

rS. Datta, Superlattices Microstructures 6, 83 ( 1989).
'M. Heiblum and C. Umbach. in Nanostructure Physics and Fabrication.

Again, for simplicity the potential is assumed to be zero in- edited by M. A. Reed and W. P. Kirk (Acauemic. Boston. 1989).
'A. M. Kriman, G. H. Bernstein. B. S. Haukness. and D. K. Ferry. Super-side the waveguide and infinite outside. The a. -is a full Irmices Microstructures tin press).

right-angle turn. The geometry of the waveguide is shown in 0. l3knistem and D. K. Ferry. J. Vac. Sci. Technol. B 5. 964 ( 1987).
Fig. 5 (a). Unless the r is quite small the transmission is es- 'David J. Kirkner and Craig S. Lent. International Journal of Numerical
sentially unity for all values of the energy. However, the Methods in Engineering (in press).

wave in the first mode may be transmitted as a *T. J. R. Hughes, The Finite Element Method (Prentice Hall. Englewoodincoming wCliffs. NJ, 1987).
combination of higher-order modes. This mode mixing is the 'H. Rob Frohne. M. J. McLennan. and S. Datta. J. Appl. Phys. 66. 2699
essential feature of such an arc. Figure 5(b) illustrates the (1989).
mode-to-mode transmission coefficient r , for i = I (the C. S. Lent and S. Sivaprakasam (unpublished).ioC. S. Lent. S. Sivaprakasam. and D. J. Ktrkner. in .Vanostructure Physicsincoming model ad several outgoing modes when r/ and Fabrication. edited by M. A. Reed and W. P. Kirk (Academic. Bos-
d = 0.7. This example illustrates the utility of the QTBM in ton, 1989).
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ABSTRACT

Tantr wichcanbe mplyedat tiinecnarnjetterWeistics sfhorsmicae ayoesueruicnproidngihgh-eerg elctrns nah curen-votagechaacnrelcswer comene a a quannTweegcdochanelictionlaie.fTermnsucann erm fan ctfetvv

single mode of the waveguide. We also examine die current in die far-fiun-llmear response regime. Away from the linear region tie cret
through the constriction satUrates and tile conduclance falls to zero.

KEYWORDS

Hot carriers: Electron waveguidles. TWo-dameuiional elecuron gas

INTRODUCTION

Improvements in epataxiail growth techniques have niade possible a large nmaber of quatum devices which tire one-dimensional in the sense
tam carriers are confined in only one spatial durtntion. Recent advmaus in hbguiphy have begani 10 produce smictume which are quantizd
in two and three spatial dimensions. Of particular tumees: am quanm. waveguads devices in whi carriers are confined to narrow Channels
which act analogously to microwave channels.

we investigate die ballistic uransport properties of a constrction in a two-dimensioual daeleto waveguide channel which can be used as a
hot-electron injector. Elections are confined in a channel of width di which nanuws abruptly to a width d, in tie constriction itelf. The
constriction is a low conductivity region that forns an effective buiew betwemus die contacts on etheir aide. A voltage as applied arss the

constriction resulting in ballistic injection of carna into die outgoing channell.

The behavior of die waveitude coe~stion is considered in two regunes. FastL we exane a very small geometry for which only a few
vransiverse- modes aim Accessible. The constiction acts likie a poteil baler. We compuut die 1lososiitsIOn clw tNs tiMCS of such a stacwie
with&a more conventional umel barrter. The focus here ason the utilty of such&a structame a a single-mode hot-elecro injector. The
ability to inject electrim a high energies in&a single mode is an impontit first sMpin the development of a new clasts of quantiun wavepude
devices. The first wave of such devices includes die stub-tiner transistos; po;IpI by SoS ano coworkers (1989) And Daua (1989). We tlo

exainea argr gomtryinwhich more incorning modes are unparum. We find a surpaisang reult for vobages beyond th linear response
regm. he urrnt the ftCntitorauas tavlewihi oughly oMYdp ndetO the constriction width. This current

saturaton resuts nacinm-votago echaracteristic remnarkably suir to an FET. We discuss device Possibilities britefy.

'Me gemtenues we exmmhe awe not direct y analogous to the cont eplored ealpanmftafly by Van Wees and coworkers (1988)

I*- L -- W W- L -~
b)

Fig. 1. The potmary of the quanflun wavegifif conso-0cuis alshow

in A). A wavegaides with n consrction. but a potenial bantier Is
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Fig. 2. The energy banld di5ara for the constiction. a), and fte
bamnef. b). shown in Figure 1.

the doretically by otes(Kinceiiow. 19W.: Szafead Some.1. We conside a cas in which te width ofteconsurs0cu o
imgrta a tenth the width of the utcomtng leads WAn both assumed to be narrow in that only a few transvemi modes ame accessible

Futemr.in our geometry the constrction is rectangular tend sibrupt. This resmbles rather mome the expenmenual geometry or Brn and

X w o k a m T H E O R Y

T'he consiction geomecry is shown in Figure Ia. The Incoming and outgoing leads ame semi-inoie and the walls are assumed to be minie
Mirierz. The x direction is the direction of current no0w and the waveguide is narrowed in the y direction. We suppose diat quantization it
he zdirection. perpendicular to the planie of the figure. is comnplete and that only oam bound staw in the z direction is occupied. Note UMta
Athe potential is Independent of z. the index of the bound stam in the z directson ma a conserved quatumit numlber and our analYSis Would

.e correct tor eachi bound state separately. A geometry such a that in Fiure Isan be iealized by creating a high-mnotility two-dimnensinal
clectron gas (2DEGrl at a teterojunction Interface. We envision the confiniag potetials on the lea Walls and the construction originting

elecumnsatically from metal layers above the heuro .iicmt (Sobs. 1989; Dama 1989).

Figure 2a shows an energy baind diagraf or the constricton. A coatiuan band edge is shown as a refeirencie level and to indicate t
, anaion in the electomomn potetial across the conasmco. T'he confinement int the y diceion raises the minimum energy of any elecilin
above this level to EI. Lhe energy of the first transverse mode. The Penn. eneggies, als meastated (rom the conductin band! edge, areasue
to be equal in the left and right lads. The value of the Fenn. eiiesg is deternined by die density tn t lads. We assume all the applied

voltage appears as a potenteal drop across Et lower conductsnc cotiction. This assumption must be checked for consistency with the final
results. Note that. unlike the usual on-uininlhewrostractnt traines. the coict isgans her e i highly Conducting 2DEG's. Therefore.
very litle band bending un tite contacts is expected. The potenuial is futher assumed 10 vary fiteary tn the consticuon region. An improved
analysis would include the effect of the injected charge desity, both a the consuteaon and in the contacts.

The wavetunction for an incoming wave in the contact can be writte.

?',..k(r. Y) -Ae,&,3jsnfniry/d). 1

,be total energy is given by

E(n. k,) -~ [k2

and the minimurmpeg of each transverse mode as t infinite squar, well resulL

Figure 2a shows the ea of each mode in the contact an i the coensats. te flis i m de is c onsintin is higher tam n herst
mode in thet left emma. creating en ffetive bow The ffecdw bem iffa eren a real posamsil hurte, thato it bflocshgher modesI t~romt propegag momn thes Iower modes Althatgh loosely sskig the barterl ean be min U be higher (or higheir modes. at is not possible.
In generil. to definse a single number which is an effeetive bar e highit for a partieular mode mase mode number is no a conserved
quantity. a higher mode in the lad can cm oul a lower mod - an the enstriaon In Figure 2. for example, the elections in the third mode
in the lead canno travel inUs th ind Mode 0 the omreasto be Of ql teft Co ope s neice- modle. The diffetuims Ia energy for modu
in the two regiota cmano ailone seon. for the dilferenes in the -nI Men of ach mode an conductio. The wanamtnisn coefficets.
which couple modes Itete am be Mluded. For -onvenaPe1 we cn dete fteffective barte height fW orh first mode (which cno

couple so any l~e moes as simply the difference betwen the AM mode mtagy i the consineno and in the incmg lead. Note doa
because the mcNr s W Ssytnma pastyi ha gooed quest on a. and 00a Modes earer coples UtOdd modes.

The current is ealenl atac view un of the voltage by a mouthe &aW famtia (Dam. 1989).

1(V) = (Le) J[f(E - Eli - eV) - f(E - Eir)j T,,(.V (2)

The ussumtsstan coeffiele. T,.,st I s atO the Ouing esinvel i mode ) th dinemaig cnre. i modlesI (Duke 1969). "his formula
reducas to ti Sualera~aadewfrmIain (fo a review -s Smeu and Sadw. 1968 Vut do~es mus aint mamhl 8 expede Ut &Iordersa eV adsiAe ms m um The - ostitsft~n(2) ertado is sene. of Salked Sane (1989) bey*n the
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Fi.3. reurntv ltamtionship for a 200 AFig. 4. The currnt-voltage relationship for a 200 A

channel wiha 60 A consurscuon. The total current charnel wat a 20mev banner. The total current
and the components injected intIo tie first and third and dhe comiponens injected int the first and scn
mode ae shown. mode aWe showi.

response regime. For each value of the applied voltage. die trnsission coefficients we calculated by solving the effecive-f5ss Schrodinger
cequation in thse region of the constrction. We use a Finite Element discretitisto. schemse. The pobiem of including current-canvuing boundaries
isIme by the Quanwmn Transmang Boundary technique tKikuwr. Lent and Sivaprakasam. 1909'1.

SINGLE-MODE WAVEGUIDE INJECTOR

barierfored v te onsricioncanbeemployed as a tumnelag buttes andi used to inject hot elections; into the outgoing lead. Second.
becuseit locs hghe moes.thecontniumacts as a mode filber. Together the effect is to enh"= sin1gles-mode injection.

We choosesa geometry with d./d = .3/ 10 and and LId = 1/4. Th em eaneay E,- = E?, the energy of thesecond mode in die wide

contact leads. Only the first two incoming modes are appreciably occupud. Die Winua~ is takeni to; be 77 K and we use an etfecuive
mass m' = 0.03m0. Lf we take d = 200 A. then thm use effective first-mode besne: height for tis constriction is 200 meV. The current
is calculate as a function at voltage using Equation (2). The reshlls Are shown in Figure 3. The total current is plotted, as welt as the
components of die current in modes I and 3 in the outgoing lead. Higher modes cauma propagate: at these energies. Mode 2 cannot propagate
in the constriction and is totally reflected. There is no cmoetfmde2 in the ousgosg led because mode I in the consictioni can only
couple to symmetrcal modes in the leads.

For compasson we cajiculm die current-voilage relauin for a squawe pow"ma bsine in a 200 A channel with the same height (200 meV)
as the effective barrier of the consmiction. The geometry is shown to Figure lb and an energy level diagimn for this real bar is shown in
Figure 2b. For the real barrer MOde number is conrved-so die-current can be broken mwt components in mode I and mode 2. which ame

Lhe same in all regions.

Compartig Figures 3 and 4. several observations can be niade. The curfewna higher in magnitude for t real barrier. This is partially because
tue mode 2 componast in the incoming lead is comspie"l reflected by t onstrction. In adtuin ft trcion of the current through die
constricion as limid by simply the geometial factor of the ratio of die chmiu wxdths Roughly speaking. dims fraction of the incoming
wave dims his the infnte hnion easter side of t swum 10 t commontion is completely redeced. On the other land, because

the eossliesta effectively blocks die Second made frm pripgns domm n u a early omfplehely stigiemd below i~O

INJECTED CURRENT SATURATION

For stuures of the siun discussed above, the aurm a a rapadly -cg fuction of volagea mall ressonables values of the applied voltage.
righer valke would tend to transfer elections unt othe111 valleys n the underlin bmndstuctne. If we scale up die siae, however, we can

obsere die far-fromn linear response regime a accessible. voltage.

Figure 5 shiwm the curnent-voltage characteristic for a cotnnetion with d./d = 0.3 and Lid = 0.25. The total current is shown broken
dlowni into the comnents due to each aneomang mode. The PForm levwd for this case is chosen W be 35E, (where Ei is the lint mode in
the , nt-ct channels). Five incon mode u 1ae occupied, altosgh do cntributon 0 thes cui. of the, fifth modeP a very small. The curteti
is nearly lnear with voltage for small voltages, twlls off in a ~ir uan tesn and saisi.i to a constns value, As the figure thows, each
mode smuss a a slightly different votange& Saturation ocous for the most impeem modes at shout the point where the applied voltae

recI Eplec

To undemid this behasvior. constider &flthde cuma aspi by FqApom (2). for smallg vougas (iless Erp/e). The volage depsnduli
occurssin both tUs moenisom coefficlenssl uin thes differmeet of Fermi facwus There me some owiscitonis in Me usassion coefficients.
but tesitel nd0 be ,nee out by th -w over adl do *gjU no denm voltage dssm ists is from the afstsum a Forms feint.
This diffeue= 11 liem di votg 1111 firs 0 Morder (die thmer rpInasll). ade doe 1uada lamer bahavtori a sass.n thes eret-volOag
chanteirises shown in FIgure S.

W= die 1oeel (1101 SCM the cl@Auseit 1 OUW Ithde Pamm voltae the euus ftom dhe right ll back 0 die left biems
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Fig. 5. The curtrm-volmge charsatristi for a 30* Fig. 6. Transtissioni coeffCicints for the first anconi-Icotiutofi (d Id = 0.3). The total curent and ing mode at vantts values of applied voltage.
thle cotition~g of the first four incoming modes is
shown.

I aflIsignlificant. Considering Bquation (2). dhis meam diat the second Fermi factor in the inuegraad, becomes negligible. The integral then
extetids from the conduction band edge an die left lead up to several kpT's above dhe Fermi energy in the left lead. The Fermi factor temn

looses any dependence on the voltage and only the voltage dependence of the transssion coefficients remain. The tranisinssion coefficients

act mesmaig as the effective bame a bent down lower and lower. Because the effective bant is small, and now thin, the transmissionI coeficients murate. The innamusion coefficients for dhe firag incoming mode. T1 ., are shown as a function of energy in Figure 6 for four
values of applied voltage. For eV = EFIC dfe rnnAsso as still chaning with applied voltage, albeit weakly. For voltages of 2. 3.
and 4 times the Fermi voltage. die tiansmission coefficiallts we nearly identical functions of energy. They saturate for this first mode a a
value of about one hal. This value is roughly the fraction of die incomiung flux that "bits' the constriction instead of die walls on either side-
Higher modes saturat at different values. It is th is murson of tie tasmiassion avier the Fermi function Nribcmes voltage intdepnd
that is behiad die currentaaaon

The current-voltage ehmseunti for eonsic of vaious widths =r shown in Figure 7. The saurati current vanes -Miatlinearly withI the constructioa width We also show in Figure s die resut for d9/d = 1. no cainsto. at all. This curve is only physically valid at
snagl values of the pouenia but it does serve a - importan check on the validity of our iniial assumifons. At a value of the cret

coressponding to astan an one of die constrion. tisl show uh O tde voltag would be dropped by die taicomta eds. Consder
die 30% constriction. At die sataacurst nts of die csuca.abot 3 puA. the voltage across the leads would be about VF/5. This is
only 5 - 10% of the applied voltage sMm die constriction in the muganon regie. Within thwe linits. we are Justified an assumning that
dieappled voltage epe, across die constructo. mote tam we aim careful riot so aiplicitly invoke Ohm's Law here. but use the calculated

1(V) functions.

3 Th're low-voltage conductance of the unconstricted channel should correspond 10 die lities response instaL Condiictances are shown in Figure

9 for the various values of due constricton. The cotidutice of die tunctnsirclud Channel, in which S modes cani propagaung. is 5 ames the

fundamaeatal conductance. 2e~/h. confinming the agreuew with inf 1 sons theory for small voltages.

At very low teipeMae the injected Current soundy di Manlse fter A 11111ina11011 peak. Figure 10 Shows a region Of negative differenaU resstance which occurs in the low temnpesauss cam. kere we take d = 1400 A. d, = 280 A. L = 350 A. and EF = l1 nv. This
agreas qualitatively with die one-damemnsj traent of Kelly and fth expertiental meaurwements Of Brown and coworkers.

3 TheV family of curves shown in Figure 7 illustrate the devwc poseafla of such a costricted geometry beyond that of A hot-elaccon inljector.

I .51

2- 4

eV/ HeV/ H.

Fig. 7. The currena-volags clauhtii for vaiu Fig. L Tie carnsiavoltage chassismtti for A Ohwl-

size constricons. nel with mo constrito usshown for compaso with

Figue 6.
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Fig.9. Te cnducanc as fuctio ofstpoed ig. 10. The ctarsit-voltsge chahuctsu~ic for a iisr-

voltage for a channiel and various; coniricons. 7b, rowcWa rvery lowmtmp. ,T~e = 100miK).
valuse of d./d is shown for each curve. There am

five propagasung modes m the incoming wavegiude.

It is possible iio cotbuct a geonetry in which a gate voltage vamie die width of the channel in a mnanner simiar to the tuning stub ut the
qiunasn die stub-tumer mhnsistor (Sots. 1989: Omits 1989). It would then be possible to gpie the satation cuimnt with a third ternal.

We note finally that the mriusssed currenta involved here in the satuhltio regie awe quits large. It is likely thai die limits of strict validity
of Equation (2) ate being eceded. In parfucular. the denvasson of diii eqmuo maumns how die erisziautdand relected curmn. dh
not after ocigtaon stafisusca or the Fermi levels in the lads. In the issamsmn region, a large traction of electrons which ipinge on die
constiction from the left are Iiansinutied to the right so this usunioi uidoubtedly needs coriecumng. The very reetwork of Banda and
Coon (Bandaras and Coon. 1989) propoes just such a correcuon for the three-daimensional electron gas cane.

I CONCLUSIONS

we have eamnind die cwrn-vollage relationsip for a constriction insa qumtutin waveguide. We find that, for small geosmires; the consrsino
may have advantages over barx sauictui as a singleaode hat-lection unjeow 10 be used in conjuinction with othier wave-guide devices.
We also estamined the far-front-liner response reguie for larger smacimres and Anrd a surprising, and possibly useful current saturation effect.I ACKNOWLEDGEMENTS
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CALCULATION OF BALLISTIC TRANSPORT IN
TWO-DIMENSIONAL QUANTUM STRUCTURES

USING THE FINITE ELEMENT METHOD 1
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I. INTRODUCTION

Current fabrication technology permits the construction of ultra-small semi-
conductor structures in one dimension, usually the direction of crystal growth. This
capability has spawned a wealth of experiments and theory describing transport
in the ballistic regime. This development has been aided greatly by he fact that
ballistic transport can be understood, qualitatively at least, by simply solving the
one-particle Schr~dinger equation. The one-dimensional form of the SchrOdinger
equation is fairly easily solved so that transmission coefficients and currents can
be calculated.

Fabrication technology is becoming increasingly sophisticated and is now be-
ginning to create structures quantized in two and three spatial dimensions. The
leap to two dimensions makes the solution of the SchrOdinger equation consider-
ably more challenging. Analytic textbook solutions become inadequate for guiding
intuition and design. Unbound states which carry current require particularly care-
ful analysis in two dimensions. It is important in improving our understanding of
ballistic transport in two-dimensional electron wave-guide devices that sufficiently
powerful and flexible numerical methods be developed.

We have used the Finite Element Method (FEM) to solve the single-particle
Schrdinger equation for two-dimensional potentials. While calculations of bound

'Supported by the Air Force Office of Scientific Research under grant no.
AFOSR-88-0096 and by an IBM Faculty Development Award.
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state wavefunctions have been done previously [3], this represents the first method
to yield wavefunctions for states which carry current. We present solutions for
the transmission coefficients of double-cavity electron wave-guide structures. The
FEM provides a very flexible, elegant way of handling boundary conditions for
very complex structures. Ultimately self-consistent solutions, at least in the Hartree
approximation, are required. The method presented here lends itself well to such
an extension because it yields the wavefunctions directly. As demonstrated in the
double-barrier resonant tunneling problem, single-particle solutions can neverthe-
less reveal most of the important transport features.

II. THEORY

There arc several ways in which two-dimensional electron waveguide struc-
tures might be fabricated. A metal pauern deposited on an AIGaAs-GaAs het-
erojunction can be used to create channels in the two-dimensional electron gas
formed at the heterojunction interface. This technique has been used by Bernstein
and Ferry in making very fine grid structures on a FET gate (11. The technique
might be refined by using a quantum well instead of the heterojunction potential to
confine carriers in the plane. Another technique which may prove useful involves
etching and regrowth of lithographically defined patterns in quantum well layers.
We do not concern ourselves here with the exact method used, but look instead
for the basic transport features such structures would exhibit.

We consider a system in which electrons arc confined in the xy-plane by
some potential which is such that only the ground state z-cigenfunction is ever
occupied. The potential in the xy-plane, defined by some lithographic means,
is assumed to take the form of rectangular waveguides which act as input and
output leads, connected to a device region. The geometry for the double-cavity
structure is shown in Figure 1. In this case the device region is simply the two
rectangular cavities and the short channel which connects them. For simplicity

-- L 2 .

* t LVLA t
I I

x

Figure 1: Geometry for the double resonant cavity. The two cavities are here
assumed to have the same width D and length LI.
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Figure 2: The transmission coefficient versus energy for the double cavity shown

in Figure I with d = 100 Angstroms, L, = 100 Angstroms, L 2 = 50

Angstroms, and various values of D.

we assume the rectangular waveguides of width d have infinite potential walls so
the wavefunctions in the leads consist of plane waves in the x-direction and sine
functions in the y-direction. We assume an incoming plane wave from the left,
which produces a reflected wave and a transmitted plane wave. The wavefunction
in the left (x < 0) contact is then,

,!J r(x,.y) = A kmizsi,, (-n) ()
N 0o

= + Z bne-ik sin + Z h, e "sin (T-- )i n=!n=N+i

In the right contact the wavefunction is

NV n7ry\
,)(.' y) =E a ek nsin ? L) + ane-""x.in \7)

d n=N+1 (2
(2)

I
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H Figure 3: The real part of the wavefunction for an energy of 0.23 eV, for
the double cavity problem. The geometry is the same as for Figure 2 with
D = 200A.

where

kn = E nm o

The incoming wave has amplitude Am and represents an excitation of the m-th
transverse mode of the input waveguide. N is the number of traveling modes
possible in the waveguide leads. The modes with n > N are evanescent modes
with complex wavenumber and carry no current.

We solve the two-dimensional effective-mass Schr~dinger equation in the de-
vice region using the Finite Element Method (FEM). The details of the method
are presented elsewhere (4]. The FEM enables us to straightforwardly include the
condition that the wavefunction and its normal derivative match the analytical form
of equations (1) and (2) as an additional set of constraint equations. The region
is discretized into small elements on which the wavefunction is approximated by
bilinear shape functions. This discretization yields a set of algebraic equations
for the values of the wavefunction at the nodal points. For simplicity we assume
infinite potential barriers at boundary walls. The boundary conditions are the that
the wavefunction be zero on the cavity walls and that the wavefunction and its
first dcrivative match those for the analytical expressions given in equations (1)
and (2) above at the interface between the leads and the device region. The in-
coming and outgoing current are calculated directly from the wavefunction and
the transmission coefficient is obtained from their ratio.

III. RESULTS

The transmission coefficient as a function of energy is shown for the double-
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Figure 4: Ile real part of the wavefunction for an energy of 0.27 eV, for

the "iouble cavity problem. The geometry is the same as for Figure 2 with
Ij= 200A.

cavity structure in Figure 2. it has bee calculated for several values of A. the
cavity width. The input and output channels are 100 A wide and each cavity
is 100 A in length with a 50 A long channel connecting them. The FEM
discrtiza~in is accomplished on square 5 A elements. Results were sufficiently
converged at this mesh size that further refinements had no significant effect on
the results.

The two main minima, at energies slightly above 0.2 eV and 0.4 eV, ame due to
excitations of bound states ofra single cavity. The real part of the wavefunction near
such a minimum is shown in Figure 3. The plateau regions of high transmission
between these minima owe their shape to the coupling between the two cavities.
The maxima at the high-energy and low-energy ends of these plateaus are due to
states which excite both wells. A sample wavefunction is shown in Figure 4.

It is interesting to note that the shape of the transmission coefficient vs. energy
curves is quite different for cavity structure than for constrictions. In a constricted
geometry, one observes sharp peaks, corresponding to the modes allowed in the
narrow region, and broad valleys. In the cavity resonance case examined here, the
transmission dips sharply at resonances and is generally high between them.

The energy dependence of the taranission coefficients shown in Figure
2 suggests possible applications of such cavities in waveguide devices. For
some implementations of lithographically defined structures. such as the metal-
on-heterojunction technique, the cavity dimensions can be changed dynamically
by applying voltages to the metal overlayers and shrinking or enlarging depleted
regions. This effectively would sweep the transmission charactexristic through a
family of curves such as those shown in the figure This presents the possibility
of transistor action in such devices [2]. In addition, as the cavity width increases,
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a large region of negative differential resistance occurs as the high-transmission
plateaus slope downward. This region, while not especially steep, has the advan-
tages of being broad and tunable (through changes in D).
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We present a fully quantum-mechanical analysis of phase-coherent electron transport in
disordered semiconductor nanostructures. The analysis is based on a scattering matrix formalism
which allows us to simulate the effects of interface roughness scattering, as well as scattering from
point defects and defect clusters. Using this technique, we have studied quantum conduction in
electrostatic Aharonov-Bohm interferometers and narrow ballistic constrictions of submicron
dimensions.

I. INTRODUCTION II. THEORETICAL FORMALISM

In analyzing quantum conduction through a semiconduc-Recent advances in nanolithography have made it possible tor nanostructure, we are essentially interested in the current
to fabricate "mesoscopic structures" with dimensions response of the structure to a vanishingly small bias. In other
smaller than the phase-breaking length of electrons at cryo- words, we are interested in the linear response conductance
genic temperatures.' In these structures, many novel quan- which is given by the finite-temperature multichannel Lan-
tum interference effects have been observed; they include the dauer formula
Aharonov-Bohm effect,2 universal conductance fluctu-
ations,3 nonlocal voltage fluctuations,4 quantized conduc- G = dE t 2 sech( EEF (1)
tance of narrow ballistic constrictions,' and "stub-tuning" 2,kT j ' 2kT
in electron waveguides.6 In all of these effects, the quantum- where tY is the transmission amplitude for an electron inci-
mechanical wave nature of electrons plays a critical role so dent from the left contact in mode i and exiting at the right
that the analysis of these phenomena require a full quantum- contact in modej, M is the total number of occupied modes
mechanical description of electron transport. in the contacts, E is the energy of the electron, and EF is the

In this paper, we have used a fully quantum-mechanical Fermi energy.
formalism-termed the "generalized scattering matrix ap- The easiest way to evaluate the transmission amplitudes t,
proach"-to study electron transport in electrostatic Ahar- is to obtain them directly from the scattering matrix that
onov-Bohm interferometers and narrow ballistic constric- describes the entire structure, including the contacts. The
tions. The generalized scattering matrix approach was scattering matrix relates the amplitudes of all incoming elec-
discussed by us earlier. 7 It has been shown to be highly suc- tron waves to those of the outgoing electron waves. One can
cessful in reproducing several results of the theory of weak construct the overall scattering matrix for any arbitrary
and strong localization, as well as universal conductance structure by cascading three scattering matrices--the first
fluctuations.' The advantages of this technique are that un- describing infusion of electrons from the left contact, the
like in the case of most other techniques, it is easy to include second describing propagation through the structure, and
the effect of evanescent states in the analysis. These states the third describing exit into the right contact. The elements
have a significant influence on transport if the structure un- of the first and the last scattering matrices that describe the791

der study is severely disordered.' Moreover, the scattering entry and exit can be found by matching the electronic wave
matrix method is ideal for treating quantum conduction function and its first derivative along the boundaries
through semiconductor nanostructures that have large-scale between the structure and the contacts. For the case of nar-
disorder7 "8 and offer an alternative approach to the more row ballistic constrictions, we have calculated these two ma-
widely used Green's function and transfer matrix techniques trices exactly by using the so-called boundary element meth-
to study mesoscopic systems. 10  od described in Ref. 11. For the case of an Aharonov-Bohm

The organization of this paper is as follows. In Sec. II we interferometer (which is a doubly connected structure), the
describe the theoretical formalism. We then present results calculation of these matrices is somewhat complicated.
from our study of electrostatic Aharonov-Bohm interfer- Therefore, for the sake of simplicity, we have replaced them
ometers and ballistic constrictions in Sec. III. Finally, Sect. by the so-called Shapiro matrix 2 which has been widely
IV contains concluding remarks. used to describe a three-way splitter. The Shapiro matrix
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relates the amplitudes of the incoming and outgoing waves For simulating interface roughness scattering in a quan-

according to (see Fig. 1) tum well, or the effect of a defect cluster, we utilize the fol-

(a + ) \E VE Alowing procedure. Interface roughness can be viewed as aa ( 2 random variation of well width on a monolayer scale. This

1*B a , variation causes a variation in the potential energies in the

abB , well. Sudden discrete changes in the well width therefore

where A and B are column vectors whose elements are the causes a sudden discrete potential step. It may be noted that

amplitudes of the incoming and outgoing waves in various a defect cluster would also produce the same effect. There-

modes as shown in Fig. 1. The superscript -+ " refers to fore, the scattering potential for either interface roughness

waves traveling to the right and' - refers to waves travel- scattering, or a defect cluster, is simulated by a constant step

ing to the left. The superscript * denotes Hermitean conju- potential of finite but varying extent.
gate. If there are M occupied modes in the contacts, then In Fig. 2 we elucidate the effect of interface roughness or a
each element of the Shapiro matrix is a M x M complex ma- defect cluster. This figure shows the dispersion curves
trix. E(k,,k, ) for the mode or subband closest to the Fermi level.

Because of the unitarity of the Shapiro matrix, the follow- The left curves corresponds to a region of ballistic propaga-

ing relations hold: tion (defect-free region) and the right curve corresponds to
region containing a potential barrier due to a defect cluster.

a = (V I - 2E - 1), (3) Note that the mode which was propagating (i.e., the bottom

b = - 2c +1). of the corresponding subband was below the local quasi-
Fermi level) becomes evanescent when it enters the region

The Shapiro matrix therefore has only one free parameter with the defect cluster. In that case, this mode can no longer
for every mode. namely the parameter e. This parameter is a travel through the structure and contribute to current, un-
measure of the transmittivity of the mode from a contact into less it does so by tunneling. Since evanescent states cannot
the structure, or from the structure into a contact. In other exhibit the electrostatic Aharonov-Bohm effect, it is con-
words, the higher the value of e (its maximum value is 0.5), ceivable then that such regions may have a dramatc effect
the more is the transmission coefficient for the mode. on the characteristics of an Aharonov-Bohm interferome-
,IThe scattering matrix that describes propagation through ter. We shall examine such effects later in Sec. III.
te structure is constructed as follows.' The structure to be Once the scattering matrices describing the individual see-
simulated is first broken up into a number of sections along tions have been evaluated, they are then cascaded according
its length such that each section either contains one elastic to the law of composition of scattering matrices" to yield
scatterer or is a region of ballistic propagation between two the composite scattering matrix for the structure. Finally,
adjacent scatterers. For each such section, a scattering ma- the three scattering matrices-two for the contacts and one
trix can be calculated analytically. In the case of a point for the structure proper-are cascaded to yield the overall
scatterer, we assume the scattering potential to be a delta scattering matrix for the entire structure from whose ele-
function which approximates a heavily screened Coulomb ments the transmission amplitudes til are obtained directly.
potential for an ionized impurity. The prescription for con- From these amplitudes, the linear response conductance is
structing the scattering matrix for a delta potential has been calculated using Eq. ( 1 ). 14

given in Ref. 8.

III. RESULTS

In this section, we first present results from our study of

A Aharonov-Bohm interferometers. An Aharonov-Bohm in-

A FIG. I. (a) The incoming and

outgoing waves at the junction
(a) between a contact and a doubly

connected structure such as an
Aharonov-Bohm interferome-

.ter. (b) A possible realization of
an Aharonov-Bohm interferom- F

oA, eter utilizing a GaAs-AiGaAs

split quantum well. (c) A ballis-
tic constriction and the bulk con-

(b) duction-band-edge profile E, Detoct-ftee Region containing
regiona detect

along the length of the constnc- region

tion. The built-in potential is de-
CONTACT CONTAOT noted by V. FIG. 2. Energy dispersion parabola for the subband closest to the quasi-

Fermi level in a structure containing a potential step due to a defect cluster

':" or interface roughness. Note that the bottom of the parabola goes above the

rc t , quasi-Fermi level Fin the region containing the defect so that the mode goes
from propagating to evanescent. This figure elucidates the mode quenching

(c) effect.
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terferometer is depicted schematically in Fig. 1(a) while Shapiro matrix were assumed to be different for different
Fig. I (b) shows a possible realization utilizing a GaAs- modes. We have assumed c, = 0.5 - 0.01i. where ei is the
AIGaAs double quantum well. The interferometer is basical- free parameter in the Shapiro matrix for the ith mode or the
ly a doubly connected structure consisting of two contiguous ith subband. A higher value of c for lower subbands mimicsconducting paths connected at both ends. Electrons enter at the fact that electrons with lower transverse energy and
one end and leave at the other. The quantum-mechanical therefore higher momentum along the direction of current
phase shifts in the two paths can be controlled by an electro- flow have a higher probability of transmitting through the
static potential impressed between the paths. Changing the structure.
potential modulates the interference between the two paths In Fig. 3(b) we show the conductance oscillations when
and therefore the net transmission through the structure. there are two potential islands in one of the two arms. The
This is turn modulates the conductance causing it to oscillate islands are each 200 A long and are situated 2500 and 3500 Aas the potential is varied, from the left contact. They represent the situation that in

The feasibility of electrostatic Aharonov-Bohm interfer- these regions, the width of the well has decreased by a mono-
ometers have been investigated quite widely both theoreti- layer thickness (2.8 A). This simulates interface roughness.
cally&'1 5' " and experimentally. . .'. In this paper, we study In Fig. 3(b) we find that the conductance oscillation ex-
the conductance oscillations of these interferometers in the hibits sudden bumps at low temperatures. We believe that
presence of interface roughness scattering or defect clusters, these are due to an interesting effect caused by the defect
The conductance is calculated using Eq. (1) with the trans- clusters. In Sec. II we discussed how a propagating mode
mission amplitudes obtained from the overall scattering ma- could become evanescent and thus get quenched upon enter-
trix as described in Sec. II. The scattering matrix for electro- ing a region containing a defect cluster. The reverse effect
static Aharonov-Bohm interferometers has been described can also occur in an Aharonov-Bohm interferometer. Whenin Refs. 16 and 19. a potential difference is applied between the two arms by

In Fig. 3 (a) we present the conductance oscillations in an holding the potential of one arm constant and lowering that
ideal interferometer with no defect or interface roughness in of the other, an evanescent mode could become propagating
either arm. The results are shown for various ambient tem- as the bottom of the corresponding subband dips below the
peratures. The two arms of the inteiferometer are each I /m local quasi-Fermi level. Every such "mode regeneration"
long and the quantum wells constituting them are 50 A wide, adds an amount 2e2/h to the conductance and causes a
the material is GaAs, and the carrier concentration is bump in the oscillation characteristics. The exact position of
1.2 X 10/cm. Ten subbands are occupied in either arm at a these bumps in the oscillations will depend on the precise
temperature of 0 K. For this calculation, the elements of the nature and locations of the defect clusters. These bumps can

therefore be viewed as fingerprints of the defect configura-
tion in much the same way as universal conductance fluctu-

.Z7.] ations. The occurrence of these bumps will also be sample
EKE specific like universal conductance fluctuations since the de-

/ fect configuration is sample specific.
In addition to the bumps, the conductance oscillationsoexhibit many kinks and glitches that smear out at elevated

temperatures. We believe that this feature has the following
0 origin. The conductance oscillation of a ring due to the elec-0trostatic Aharanov-Bohm effect exhibits two distinct sets of

200.0 a minima arising from two different interference conditions. 6
electrostatic potential (volts) One set of minima is caused by the usual destructive interfer-

ence of transmitted electrons and the other arises due to the
constructive interference of an electron traveling completely
around the ring and interfering with itself at its point of entry

M Minto the ring. 6 The positions of the secondary minima in the
oscillations are strongly mode dependent. In a multimoded

12-
structure, such as the one that we have studied, the varying
positions of the secondary minima (for the different modes)
impart to the oscillation pattern a random speckled nature
that create the appearance of glitches. The secondary mini-

U ma however bleach out very quickly with increasing tern-
perature16 so that the glitches disappear at elevated tem-AO 0.7 1A4 2.1 Z . O-

electrostaic potential (volts) perature.It is obvious from Figs. 3(a) and 3(b) that interface

a- FtO. 3. (a) The electrostatic Aharonov-Bohm conductance oscillations at roughness can almost wash out the oscillations and make
* two different temperatures when the two arms of the interferometer are them indiscernible. This is a serious deleterious effect which

defect-free. (b) When there are two potential islands in one arm due to two is somewhat mitigated at elevated temperatures. However,regions of interface roughness. this does not mean that the performance of Aharonov-
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Bohm interferometers with interface roughness will improve The broken lines in Figs. 4(a) and 4(b) are the results of a
with increasing temperature, since the conductance modula- classical calculation obtained by cascading probability scat-
tion also decreases rapidly with increasing temperature. tering matrices rather than amplitude scattering matrices.'

We now proceed to discuss electron transport in narrow The classical conductance is found to be independent of the
ballistic constrictions. Such a structure is depicted schemati- length of the constriction instead of being inversely propor-
cally in Fig. 1 (c). The structure is usually patterned by elec- tional to the length since transport within the constriction is
tron-beam lithography on a two-dimensional electron gas purely ballistic. The only scattering (which gives the con-
such as an inversion layer or an accumulation layer. The ductance the finite value of 7.37 e2/h ) is the scattering that
layer width is assumed to be 100 A and the background im- takes place at the interface between the wide and narrow
purity concentration is 1.2 X 10' 6/cm' everywhere. The regions. The classical conductance is therefore purely a re-
width of the constriction is 1250 k, and the wider contact suit (and a measure) of the contact resistance.
regions are 5000 A wide. The Fermi energy is 1.43 meV. There are several interesting features in Figs. 4. First, the
Eleven subbands are occupied in the contact regions and two conductance calculated quantum mechanically is less than
in the constriction, the classical result, and second, it oscillates as a function of

In Figs. 4(a) and 4(b) we show the conductance of the the length of the constriction. These are both due to the fact
constriction as a function of its length normalized to the that the constriction acts as a potential barrier to electrons
deBroglie wavelength of the lowest-lying transverse mode in impinging from the wider contact regions. Classically, every
the wider contact region. This wavelength is approximately electron that arrives with a kinetic energy larger than the
1250 A. Figures 4(a) and 4(b) show non-self-consistent and barrier height can transcend the barrier and contribute to
self-consistent results, respectively, where self-consistent re- current, but quantum mechanically there is a nonzero prob-
suits are those that account for space-charge effects or the ability of reflection. Because of this reflection, the quantum-
Hartree correction. We have accounted for self-consistence mechanically calculated current (or conductance) is always
approximately by incorporating a built-in potential (caused less than the classical result. In addition, the conductance
by space-charge effects) at the interface of the contact re- oscillates because of continuum resonances.20 ' Changing
gions and the constriction. The built-in potential was calcu- the length of the constriction is equivalent to changing the
lated by requiring that the Fermi level be flat at equilibrium extent of the barrier which causes the transmission probabil-
and the bulk carrier concentration (or the Fermi energy) be ity to oscillate. Finally, another significant feature to note in
the same -verywhere. The built-in potential was found to these plots is the importance of space-charge effects. It can
be - 0. 10251 meV, which is- 7% of the Fermi energy. The be seen from Figs. 4(a) and 4(b) that the number of oscilla-
bulk conduction-band profile including the built-in potential tion cycles within the period shown are different depending
is shown in Fig. 1 (c). on whether space-charge effects are included or neglected.

The difference is due to the built-in potential discussed be-
fore. This potential alters the energy and hence the wave

' l vector of the incoming electrons thereby affecting the period
•- J of the oscillations.

Q ,IV. CONCLUSIONS
In this paper we have analyzed phase-coherent electron

3 a i transport through disordered Aharonov-Bohm interferom-
oeters in the presence of interface roughness scattering and

61 defect clusters. We pointed out the phenomenon of mode
0 ,,quenching and mode regeneration in these structures that

LA give rise to well-resolved sample-specific bumps in the con-
ductance oscillations. These bumps act as fingerprints of the

_ _ __[_ _ _ internal defect configuration. We have also analyzed elec-
_) tron transport through ballistic constrictions and found that

space-charge effects may be important in these structures.
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Transmission through a bend in an electron waveguide
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The transmission properties of a circular, right-angle bend in a two-dimensional electron
waveguide are calculated. Significant reflections from such a bend would have serious
consequences for the development of a quantum electron waveguide technology. The results
show nearly perfect transmission around the bend, except for energies very close to the
threshold for propagation in the channel. This is true even for rather sharp bends. A significant
amount of mode mixing is found, however, for bends with a small radius of curvature.

Interest in the creation of nanometer-scale quantum de- designs would be severely constrained. This would be par-
vices has focused attention on the problem of the conduction ticularly problematic given that the entire active region (or
properties of quantum channels in which electrons are con- subregion) of the structure must be smaller than an electron
fined in two spatial dimensions. Typically electrons are con- mean free path.
fined in one dimension by the self-consistent potential at a I report here a calculation of the transmission properties
single semiconductor heterojunction interface or by the of circular, right-angle bends in quantum channels. The re-
quantum well potential formed by two interfaces. The result- sults are encouraging in that for even very tight corners very
ing two-dimensional electron gas (2DEG) can be confined little reflection is seen. A close analysis reveals that mode
further by imposing a potential variation in the plane of the mixing can be important.
electrons. This is often done by depositing a patterned metal The quantum waveguide problem is formally similar to
gate to which a negative voltage is applied. The gate elec- the problem of microwave propagation in conducting wave-
trodes deplete the area beneath them, leaving only conduct- guides. For a straight channel, both can be reduced to a sca-
ing channels in the 2DEG. 1. lar Helmholtz equation. However, the boundary conditions

Such constricted geometries are often thought of as elec- for the quantum wave function are analogous to those of TM
tron waveguide structures in analogy with microwave de- modes in rectangular waveguides whereas it is the TEho elec-
vices. If the active region is small enough, electron scattering tromagnetic mode (which corresponds to different bound-
can be neglected and electronic transport in the region be- ary conditions) which is the dominant mode. The electro-
comes completely ballistic and coherent. In this regime, magnetic problem of transmission around a circular bend is
steady-state transport can be described simply by the time- further complicated by the vector nature of the electric and
independent effective-mass Schr6dinger equation. magnetic fields.

The possibility of transistor action by purely coherent The quantum calculation is done within a parabolic sin-
electron interference effects in waveguide structures has gle-band effective-mass model with m* = 0.05m.. Electrons
been pointed out by Sols et al.2 They examined the properties are assumed to be completely confined in the plane of the
of a stub-tuner type transistor, a variation of which has been 2 DEG with only the ground-state wave function in the per-
fabricated by Datta and co-workers.' The author has point- pendicular direction accessible. The potential energy profile
ed out the existence of transistor action in transmission of the quantum channel depends on exactly how it is realized
through a constriction in a quantum waveguide.4 Barker' and is usually assumed to be either parabolic or a square
has discussed many interesting electron waveguide geome- well. 6 Here it is taken to be a square well of width d, with
tries and their possible uses in novel device structures. Al- V = 0 inside the channel and V infinite outside. The bend
though exploration of this area is very new and many obsta- itself is a circular arc with central radius r.
cles remain, it may prove possible to construct an integrated I consider here only waves incident on the bend which
circuit technology based on the interference properties of are in the fundamental mode of the channel. Reflected and
electrons confined in these waveguide structures. transmitted waves may be in higher modes.

In contemplating a quantum device technology in The wave function is calculated numerically by discre
which many nanoscale devices are interconnected, one is led tizing the Schr6dinger equation in the region of the wave-
to consider the feasibility of interconnections in which a guide bend. A 41 X 41 nonrectangular mesh is used here. The
quantum channel bends around a curve to connect two de- boundary conditions are given by the requirements that the
vices. If such a bend were to cause significant reflections, the wave function vanish at the waveguide walls and that it
interconnections would have to be considered as part of the match the allowed solutions in the leads at the input and
devices themselves, greatly complicating the design and un- output boundaries. Since the reflection and transmission co-
derstanding of nanocircuits. In the worst case, one would be efficients are unknowns which depend on the solution in the
forced to avoid bends entirely, limiting the design to linear interior region this is not a trivial procedure Inclusion of
arrays only. Clearly, a bend with a sufficiently large radius of these kinds of boundary conditions is accomplished using
curvature would be expected to cause very little trouble. If the quantum transmitting boundary method (QTBM) of
the required radius were very large, however, the integrated Lent and Kirkner, described in detail elsewhere. The com-
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FIG. I. Transmission coefficients for circular bends in a quantum wave- FIG. 3. Transmission coefficients of the circular bend with rid = 2.0 for an
guide with differing radii of curvature. The transmission is shown for P/ incident wave in the fundamental mode of the waveguide. The solid line
d = 2.0 (a). 1.0 (b). 0.75 (c). 0.65 (d). and 0.5 (e). The inset shows the corresponds to the case of infinite potential barriers forming the channel
problem geometry. wails. The dotted line corresponds to finite bamers of height 48E,, where E,

is the energy of the fundamental channel mode. For the finite barrier case.
and effective width d. is defined by the condition that kdr/r = I at the

plete solution yields the wave function in the region of the cutoffenergy.
arc, and the transmission coefficients T,.,, the ratio of the
outgoing current in the!" mode to the incoming current in
the first mode. very sharp transmission rise to essentially unity over a very

Figure I shows the transmission coefficient T,. for en- small energy range. For design considerations, this seems
ergies just above the threshold where the fundamental mode encouraging.
can propagate. The transmission is shown as a function of At energies well above the threshold for the first mode,
kd /ir, where k = 12m*Eft. Since all quantities in the transport in higher order modes becomes possible. At these
problem scale with the de Broglie wavelength of the electron, higher energies, an incoming wave which is purely in the first
plotting the transmission coefficients in this way gives re- mode can be mixed into higher modes by the bend. Figure 2
suits which are independent of the channel width d and de- shows the transmission coefficients from the first mode into
pend only on rid. The first mode of the channel can propa- the first three modes for rid = 0.65. Clearly a significant
gate for kd /r> 1, the second mode propagates for kd lr> 2, amount of mode mixing is possible at energies which allow
and so forth. Figure I shows the transmission coefficient for multimode transport. As one would expect, at larger radii of
rid = 0. 5, 0.65, 0.75, 1 .0, and 2.0. curvature, the mixing diminishes. Figure 3 shows the trans-

The most striking feature of Fig. 1 is how rapidly the mission from the fundamental mode into the first two modes
transmission function approaches unity, even for bends with for a bend with rid = 2.0. Transmission into the second
a very small radius of curvature. Transmission is greater mode is greatly reduced and transmission into the third
than 90% at values of kd/i only very slightly above the mode, while possible at the energies shown, is negligible.
threshold for transmission. Notice that rid = 0.5 corre- Real waveguide bends would have a more complicated
sponds to a bend with inner radius of zero, i.e., a sharp right potential than the infinite square well assumed in this model.
angle. Even this abrupt turn produces little reflection except The channel walls would allow some penetration of the wave
at energies just above the threshold. As is evident in the fig- function into the potential barrier. The simplest model
ure, a central radius of twice the channel width produces a which includes this softening is a square well channel with

finite barriers. Figure 3 also shows the results for transmis-
sion around a circular bend with r/d = 2.0 and a confining

.o [ potential of 48 E, where E, is the energy of the lowest trans-
verse mode. These results suggest that softening of the walls

7 7reduces reflection and mode mixing.
In summary, the transmission properties of a circular

bend in an electron quantum waveguide have been calculat.

".50 - ed. Reflections from the bend, which could make the design
of integrated quantum waveguide devices difficult, are found
to be negligible except in an energy region very close to the

0.25 T,. threshold for traveling waves in the channel. At energies
Thigh enough for multimode transport, a bend can introduce

,0.5 significant mode mixing. This can be minimized by choosing
0.0 o 1.00 1 0 2.00 230 3.0 3.3 bends with radii a few times the channel width.
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ABSTRACT

I We examine transport through several quantum electron waveguide geomties. Reflection and mode-mixing
in transmission through.bends in quantum waveguides are calculated and the impact on inecnncin between
devices discussed. We calculate the current-voltage relatiouship for a constiction in a qusantum waveguide for applied
voltages beyond linear-response regime. Strong resomanc effects in waveguide cavities are found to persis even when
cavity geometry is non-abruipt. We demniastrate the existence of current vortices in rsonlant cavities.

5 1. Introduction

There is ample experimental evidence that a two-dimeneional electron gas (2DEG), created at a heterojunction
iterface can be further confined electrostatically by depositing a nmetal gate pattern above the interface (1,21. The
electrons are apparently ballistic and coheret over regions as large as a microni or more. By -lithogaphically
Patterning the metad gate, electrons can be confined to travel in narrow quantum channels which act much like
rrcrowave waveguides. Since the nanometer-ecale confinement geometry can be controlled by the voltage applied to

the gate, many device applications are possie for such, structures.

We explore some of them possibilities by calculating the transmueson properties of several waveguide structures
Our approach is to solve the two-dimensional, effective-mage, Schr&ding equation directly in real, space. Throughout
we use an effective mun of me = 0.05 mo and assume that the confinement in the direction perpendicular to the3 plans of the 2DEG is complete. We use a Finite Element discretua~tio schme and current-carrying boundaries are

aIIC

I kdhg

Fig. 1. Geometry of a right-angle circular bend in Fig. 2. Traignumi coeffcients fox circular bends
a quantum waveguide. in * quantum wavegujds with diffeing radii of cur-

vature Th trammm is show. for r/d = 2.0I (a),1.0 (b), 0.75 (c), 0.85 (d), and 0.5 (a).



nciuded using the Quantum Iranszwitting Boundary Method f3].

In the next section we discuss transmission through bends in quantum waveguides. a Q uestion reievant for the
problem of making interconnections between electron waveguide devices. Section 3 explores the transport through

constriction in a waveguide when a finite voltage is applied. Section 4 examines resonant cavities in quantum
vaveguides ana the appearance of vortex excitations of the current through a cavity.

1 2. Bends

The construction of large-scaie integrated nanoelectronics will require a basic circuit element, the role played
l by field-effect and bipolar junction transistors presently, and an architecture for connecting the basic elements in a

useful way. While the choice for neither of these is clear today, it is certain that nanometer-scaie devices will need to
be connected to each other. The question of the transmission properties of bends in quantum waveguides becomes
immediately important. If the physics of ballistic transport causes significant reflections in all but the most gentle of
bends, design of an integrated technology will be seriously constrained. Most proposed quantum interference devices
require singie-moded transport in the channels for optimal effectiveness. Mode-miing caused by bends also becomes
an important consideration.

With this in mind, we nave examined the transmission characteristics of circular bends in quantum waveguides
4J. The geometry of the bena is shown n Figure i. The waveguide has a width d, which is maintained around the
bend. The wai--are taken to be infinite potential barriers with no potential in the channel itself. The radiu of
curvature of the center of the channel is r. We plot the transmission coefficient for the fundamental mode of several
waveguide bends as a function of the the scaled energy in Figure 2. The plot is independent of d if we plot the
transmission versus kd/w where k = /2-m'*/A. The m;' traveling mode of the waveguide becomes accessible at an
energies corresponding to kd/r > m. The plot shows the energy region just above the cutoff for the first mode. The
transmission coefficient is shown for several values of rid ranging from 2.0 to 0.5. The case of r/d = 0.5 corresponds
to a bend with an inner radius of curvature of 0, and therefore represents the most abrupt Limit of a circular bend.
Even for this extreme case. the transmission rises rather rapidly, reaching nearly 90% when kd/r = .06. For more
gentle curves, of course. the turn-on is more rapid. For the case when r/d - 2.0, the transmission is essentially unity
for kd/w just 2% above the cut-off.
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Fig. 3. The tranmamion coefficients of the circu- Fig. 4. Geometry of consriction in an electron
lar bend with rid = 0.65 for an incident wave in waveguide.
the fundamentai mode of the waveguide.
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.As the energy increases to the point where the second waveguide mode becomes accessible. mode-mixing begins
:o occur as the wave traverses the bend. Figure 3 illustrates the transmission from mode I in the incoming cannei
.nto the first three modes oi the outgoing channel for the rid = 0.65 case. Mixing into the second mode is reduced
to about 10% for rid = 2.0

Our resuits indicate that circular bends in waveguides probably do not impose serious constraints on interconnec-
ions. Clearly, some care has to be taken to avoid mode-mixing if single-moded operation is desirable. That would

most easily be achieved by keeping the injected electrons below the energy threshold for multi-moded transport.

3. Constrictions

Ballistic transmission through structures narrow enough to be called electron waveguides was first observed and
has been widely studied in the "split-gate" geometry [1,21. A narrow quantized channel connects two regions which

are both two-dimenmonai in character. We focus our attention here on a related, but different geometry, a costriction
in the narrow channel itself (6]. This is also referred to as the "wide-narrow-wide" geometry and has recently been
studied experimentally (5]. The problem geometry is shown in Figure 4. The channel of width d is narrowed to
d. < d for a length L and then widens again to its original width. For simplicity we take the transition from wide to
niarrow regions to be abrupt. We also have assumed infinitely hard side-wail barriers.

The consLricted region presents a larger ballistic resistance to current flow. It is possible, therefore to maintain a
relatively large voltage difference between the two sides of the constriction. if the voltage drop across the constriction

is large compared to kTfe, the transport. can no longer be described by linear response theory. Landaner theories in
which the conductance is proportional to the tranmission coefficient evaluated at the Fermi energy (7,8,91 are not

appropriate in this regime. To calculate the current-voltage relationship we use a modified Esaki formula.

1(V) =(Le) f f(.E - E, - eV) - f (E - EF)] ZT,,AE,V)dE. (1)

In this equation T,, (E, V) is the transmission coefficient from mode i in the left channel into mode i in the right
channel at an energy E. when a voltage difference of V is applied between the two wider regions. The functions
f(E) are Fermi-Dirac distribution functions. We approimate the effect of the applied voltage by assuming a
linear potential drop across the constriction. No bending of the bands in the wider lead regions is included. This

* 4-. d,/d=O.3 D
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Fig. 5. The current-votage characteritic for var- Fig. 6. Idealised cavity in a quantum wavguide.
ious constrictions m .
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approximation is reasonable because the resistance of the narrow regions is much higher than the the unconstricted
channels.

We examine a geometry for which L/d=0.25 and we vary de/d between 0.2 and 0.5. We choose the Fermi level

in the leads to be EF = 35 El, where El is the energy of the lowest channel mode. Five incoming modes are then

occupied. althougix the contribution of the fifth mode is very small. At energies corresponding to occupied states.

we calculate the transmision coefficients required in equation(l) and integrate to obtain the current. The current

voltage relationship obtained for various constriction widths is shown in Figure 5.

The most dramatic feature of these results is the saturation of the injected current at voltages greater than the

Fermi voltage. This can be understood by examining Equation (1). At low voltages the dominant energy dependence

in the integral is the difference of the Fermi functions. Variations in the transmission coefficients tend to be smeared

out by the sum over the modes. For small voltages, the difference in the Fermi functions is a linear function of

the voltage. This is simply the linea-response result. As the voltage increases beyond VF, the contribution of the

second Fermi function becomes negligible and the first term in the integral becomes independent of voltage. The
voltage dependence is then due primarily to the transmission coefficients. However, as the voltage drop becomes
steeper, the transmission coefficients tend to saturate at values proportional to the geometrical ratio 4/d. Thus the
total current saturates at a value determined by the constricted width. Since the width of the constriction can be

:ontrolied electrostatically, this geometry may have potential device applications.

3 4. Cavities

Two nanometer-scale quantum interference transistors have been proposed which are both based on the analogy
between microwave waveguides and electron waveguides. The microwave stub-tuner design has been adapted to

electron waveguide structures in somewhat different ways by Sols et sL [121, and Datta (101. Realisation of the

structure proposed by Datta has recently been reported (111 Each device employs a resonant cavity which modulates
the transmission through a waveguide channel. For abrupt potentials with infinitely hard wails (like the potentials
discussed above), the transmission coefficient vanishes for certain energies (10,12. By electrostatically controlling

the dimensions of the resonant cavity, transistor action is obtained.

so.0 lie LIM
OS kd/x

Fig. 7. Transmission coefficient for the first Fig. 8. Model potential for a resonant cavity in
waveguide mode through the cavity depicted in an electron waveguide.
Figure 6. The transmission is shown as a function
of kd/r whereo = v /A.
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I In this context. we examine the phenomenon of transmission through resonant cavities in quantum eiectton
Wavegulies. We consider a symmetric structure. the geometry of which is illustrated in Figure 6. The transmision

:oeflicient is shown for a cavity with hard wails in Figure 7. We focus here on three questions concerning transport

in such structures.

1. Does transmission through more reaiistic. rounded potentials display the same sharp vanishing of the trans-

misson coefficient at resonances as is obtained in the idealized structure?

2. How does the charge m the cavity change as the electron wave moves on and off resonance?

3. How does the presence of the cavity affect the flow of current in the cavity region?

Figure 8 illustrates a symmetric cavity with a les abrupt geometry than the idealized case (14]. In the incoming
leads the potential is zero across a width t and then increases quadratically. This form of the potenial profile acros

waveguide was suggested by the calculations of Stern, Frank and Laux 1151, and the experiments of Wharam et aL
i In the cavity itself, the potential is zero in the center region and has quadraticaly increasing wails. The comers

have aiso been rounded. This potential is not the resuit of a sed-consistent calculation. but is rather a model which
mirrors the important features of the actual potential.

I The Schr6dinger equation is solved first in the leads to obtain the lead eigenfunctions. These are then used in
the construction of the boundary conditions for the problem of transmission through the cavity using the QTBM.
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Fig. 9. The upper graph is the trawaziin coefficient for the first waveguide mode
throuigh the cavity depicted in Figure S. The lowwgraph show. Q, the intei Over3 the cavity of the electron probability density as a function of the scaledi everv'.
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I We choose cavity dimensions such that L = 2t. D/t = 3. The lowest mode in the channel is localized to a width of

approximateiv 1.4t which we call d, the effective channei width (which now varies for different modes). The calculated

rausn'm1ssion coefcient ior the m = I mode incident on the cavity is shown in Figure 9(a). The features are certainy
qualitativeiv similar to the hard-wail case shown in Figure T. At resonance conditions the transmission coefficient

vanishes. The answer to the question ii) above is that the phenomenon of compiete quantum reflection at certain

resonance conditions is preserved, even when the corners of the cavity are rounded and the wads are softened.

I At each injection energy, we calculate a quantity Q defined by

SQ= ! (zy)12dz d, (2)

which is proportional to the total electronic charge in the cavity. Fig=r 9(b) shows the Q for various injection

energies. At resonance conditions the charge in the cavity is enhanced. The extent. of the enhancement is different

for different resonance states. Over the range shown, the greatest increase in Q occurs at a transmission peak. Such
aks are reiated to the peaks in transmission over a one-dimensional well. at which energies the probability density

... me wed also increases. Further discussion of the nature of the resonances is presented elsewhere j18]. From this

,(ampie it is clear that modulation oi the charge in the cavity accompanies modulation in the transmission through
;he cavity. If the magnitude of the charge stored in the cavity is sufficient. it may be able to provide electrostaticmodulation ot nearoy quantum structures, thus permitting a direct coupling between nanometer-scaie devices.

I Since we solve the Schrdiinger equation for the wavefunction in the cavity region, we can calculate the current
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-I density directly from the wavefunction. The electron particle current density is given by,

3(, Y) = •(iP(zY) Ok(z'u) - &(Z' 00(cY)). (3)

Figure 10 shows the current density in the cavity for an energy corresponding to the first minimum (zero) in the

transmission. Figure i1 illustrates the current density in the cavity for the maximum in transmission which occurs at

kd = 2187. Current vortices are excited in the cavity by the incoming wave. The vorticisy observed here is distinct

from hydrodynarmc vortex formation in that there are no interparticle interactions in the model. Vortex formation

in this system occurs in the context of a one-electron model. Perhaps the closest analogy is with vortex formation
in superfluids [17].

The examples of vortex formation shown in Figures 10 and 11 display some features unique to this ballistic
electron system. Note that for the case shown in Figure 10 the transmission coefficient is zero. The net current in

both input and output leads is zero. The incoming wave is totally reflected by the cavity. The current enters the

cavity, swirls around. and exits through the input lead. The vortices could not be excited if there were no incoming
wave. of course, but the wave may be totally reflected. The case depicted in Figure ii shows a situation where
reflections by the cavity are minimal. Note. however, that at the center of the cavity the current is actually going

in the reverse direction - toward the input lead. The primary current paths split on either side of the cavity center
-trn merge again on the output side.

I The excitation of current vortices in the cavity region is a feature of ballistic transport not limited to special

resonance conditions. The rounded features of this model potential enhance vortex formation but are not essential
- the abrupt, hard-wall pctentials also show vortex excitations. Vortices need not occur in vortex-antivortex pairs if

the potential is not symmetric. Very general arguments can be made to show vortex excitations are a basic feature
of the two-dimensional electron gas system. A breaking of the time-reversal symmetry, in this case provided by the
injected current, is required to expose them [181.

This work was supported by the Air Force Office of Scientific Research and by the National Science Foundation
under grant number ECS890025 through the National Center for Computational Electronics. and utilized the Cray-23 at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign.
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IAbstract
Coherent ballistic transpor through a circular resonant cavity in a quan-
tum electron waveguide is examined. The circular cavity is weakly
coupled to a rectanguiar channel. The current density, in the cavity re-gion is calculated from the solution to the effective-mass Schrndinger
iquauon. Current vortex iormanon m the cavity and a related inc-ease

in pmoability density in the the cavity occur at certain resonant energies.

Electrons can be trapped in the narrow quantum well formed at the heterojuncuon
interface between two semiconductors with differing bandgaps. The resulting two-
dimensional electron gas (2DEG) can have a very high mobility. It is possible
to confine the electrom further by making some areas of the plane have a higher
Potential that others. A common technque for imposuig this additional potential is to
deposit a lithographically defined metal pattern on the surface of the semiconductor.
When a negative voltage is applied to the metal the regions immediately beneath
the metal become potential barriers for the electrons and are depleted of carriers.
Electron channels which function as electron waveguides. in analogy with microwave

I
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Figure 1: Geometry for the circular rcsonant cavity.
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wavegudes. can be formed in this way. Mo complicated potentals in the plane of
the 2DEG can be created by suitably patterning the metal gate layer.

Two designs for creaung a quantum-interference based transistor have recently
been roposed. Sols et aL proposed a su bum tansistor consisting of a rectan-
guiar stub on a straight election channel (1]. 'Me wave traveing down the channel
resonates with the stub cavity and produces strong maxim and minima in the trans-
mission through the device. The modulations in the transmission become modula-
UoS in the current through the device. Since the length of the stub can be controlled
electostancaily, it can act as a gate. Dat has discussed a variant of this design [2].

The nature of the resonances in such devices has not been fully investigated.The energi at which the resonances occur ae not simply related to the resonances
of bound states of the stub region. Elsewhere we have shown that essential in
understanding these resonance effects is the recognition that they are associated withthe formation of ballistic current vortices in the cavity (stub regions) (3]. Here we
examine a resonant structure which is designed to maximize these vortex effects.

0.. 
7'l

zo

I F

Fig. 2. Transmission through the circular
cavity.

C- 10-

FJE,Fig. 3. Charging in the crcular cavity.



We consider transmission through a rectangular quantum channel which is cou-

pied through a barrier region to a circular cavity. The geometry is illustrateo in
Figure . The cnannel has width d and first-mode energy El. The potential is zero
inside the channel and in the center section of the cavity. The wails of the cavity
increase quadratically from zero at the inner radius r to 26E , at the outer radius.
t?. The channel edge truncates this potential and a finite potential barrier is formed
between the channel and the circular cavity. Electrons are incident from one end of
the channel in the fundamental channel mode. For the range of energies considered
here. only one propagating mode can exist in the channel.

The effective-mass Schubdinger equation is solved numerically over the device re-
gion using the Finite Element Method. Boundary conditions appropriate to traveling-
wave states are included using the Quantum Transmitting Boundary Method (41. This
tcchnique has been employed in the study of other quantum structures (5,61. The
calculated transmission coefficient is shown in Figure 2. To examine the build-up of
charge in the cavity itself, we define a quantity Q which is proportional to the total
,:avtty charge.

I~ v~j2dz diu. I

Figure 3 shows the increase in Q by more than two orders of magnitude which
accompanies the resonances. Because of this charging of the cavity, further invesu-
gations will need to include seif-consistent effects.

More information about the nature of the resonances can be gained by considering
the current density. From the wavefunction. the ballistic probability current density
can be computed using the relation

i=-_-fvoo* &- -~o (2)
2m-

Both the current density and the probability density are shown in Figures 4 and 5
for the second resonance. The third resonance is depicted in Figure 6 and 7. The

I
Fig. 4. Current density for the E = Fig. 5. Probability density for the
1.42E, resonance. E = L.42E, resonance. For this

resonance In.ri = (2. 1).



resoanc .n = .

Fig. 6. Current density for the E = Fig. 7. Prlblt density for the
1.68E1 resonance E :1.66E1 reciance. For this

resanuiou (n,m) -" (1,4).

large current vortex formed in the cavity is appaLent The direction of current flow
in the cavity is the same for all energies.

In the cavity, the wavefuncuon at these resonances is approximately that of the
cavity in isolation. The resonances can be labeled by quantum numbers n and m
which denote the number of radial nodes and the orbital angular momentum respec-
tively. For higher energies, resonances occur whioh are associated with coupled
cavity-lead excitations. These am not directly relamed to the cavity modes and are
typically composed of many small vortices in the cavity and channel

This work was suppoted by the Air Force Office of Scient Research. an
IBM Faculty Development Awanl. and by the National Science Foundation under

gram number ECS890025 through the National Center for Computaunal Electronics.
and utilized the Cray-2 at the National Center for Supercompuing Applications.
University of Illinois at Urbana-Champaign.
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Ballistic current vortex excitations In electron waveguide structures
Craig S. Lent
Department of Electrcal Engineenn& Universty of Notre Dame, Notre Damc Indiana 56556
(Received 15 May 1990, accepted for publication 27 July 1990)

Coherent ballistic transport through a cavity in a quantum electron waveguide is examined.
Electrons passing through the cavity excite vortices in the current density in the cavity.
The circulating currents may be larger than the current in the waveguide leads. Vortex
excitations are possible even when the incoming current is totally reflected and no net current
passes through the cavity.

Quantum electron waveguide structures can be fabri- cavity of width D and length L. Electrons traveling
cated by further confining electrons in the two-dimensional through the cavity exit on the right into a channel of the
electron gas (2DEG) formed at a semiconductor hetero- same width as the input lead. The calculations discussed
structure interface. The additional confinement is usually here are for the case when Did= 3 and L = d. The poten-
accomplished by means of a metal pattern deposited on the tial is assumed to be zero inside the cavity and the chan-
surface and held at a negative potential, depleting the re- nels. Outside, the potential is infinite and the wave function
gion immediately below it of carriers. With this technique, is zero.
as well as others, it is possible to create channels with Quantum resonance effects are strongest if only one
dimensions comparable to the de Broglie wavelength of the mode of the waveguide channel is excited. Most of the
electrons. These channels then act as electron waveguides, device structures proposed are designed to operate in this
in analogy with microwave waveguides.' Quantum reso- low-current, single-mode regime. The calculation here as-
nant cavities can be formed by creating a small region in sumes that the wave incident from the left is in the first
which the channel widens substantially. If the dimensions channel mode. Reflection and transmission into all other
of the cavity are small compared with the electron mean modes are included.
free path, electron transport through the structure is both Equation (1) was discretized on the interior of the
ballistic and coherent. Resonance effects strongly modulate cavity region using the fitite element method. A 49 X49
the transmission through the cavity. This phenomenon mesh of nodal points was used. The boundary conditions at
provides the basis for proposed quantum interference the input and output leads are established using the quan-
transistors.2-5 tum transmitting boundary method (QTBM). 6 The

The exact nature of these resonances has not been fully QTBM permits the automatic inclusion of all reflected and
explored. The energies at which the resonances occur are transmitted modes, including evanescent modes, without
not simply the bound-state energies of the cavity. The pos- requiring any discretization of the lead regions. Solution of
sible role of currents in the cavity has not been addressed. the discretized Schr6dinger equation yields the values of
In this letter, resonance effects in a symmetric rectangular the wave function at the nodal points. The current into the
electron waveguide cavity will be examined and attention right lead is calculated from the wave function directly and
will be focused on the current density in the cavity itself. the transmission coefficient T, obtained as the ratio of the

Confinement in the plane of the 2DEG is assumed to current transmitted to the incident current.
be complete so that no perpendicular degrees of freedom Figure 2 shows the transmission coefficient for the first
are accessible. Transport through the cavity is calculated
by solving the two-dimensional effective mass Schr6dinger
equation

- (fi2 /2m*)V2*(xy) + V(xy)#(x,) =E#(xdy).

Equation (1) is solved numerically for the wave function -
#/(xy). The two-dimensional electron particle current den- d D
sity is calculated directly from the wave function through
the relation

j (x,.)--- -A/m*) Im [ *(Xd,) VO (X-Y) 1 (2)

An effective mass of m* = 0.05 m0 is assumed throughout.
Since the electron motion is confined in the plane of the L x
heterojunction interface, discontinuities in the effective
mass need not be considered. FI. L Geset of a resonant cavity n an elacatu wavqids. The

Figure I shows the problem geometry. Electrons in a htcd aM indicsm the rom am wWhi the Schradlw equad. is
long channel of width d are incident from the left on a solved and for which the current density is dispisyed i FIS. 3 and 4.
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For experiments in which the voltage across the device the cavity, computed by finding the area under the curve in
is small enough for linear response theory to hold, the Fig. 5, was calculated to be YoD/6, in agreement with the
transmission coefficient plotted in Fig. 2 is proportional to requirement of current conservation.
the conductance of the cavity. - 9  A rough estimate of the magnetic field associated with

From the wave function in the cavity, the electron a vortex can be made. Because of the large intrinsic resis-
particle current is calculated using Eq. (2). Figure 3 shows tance of a single-mode channel (h/e 2 =25 kfl), the chan-
the current density in the cavity region for an energy cor- nel current is typically 0.5 MA or less. If the vortex current
responding to kd/r = 1. 315, the position of the first zero were comparable and the current flow were approximated
of the transmission coefficient. The appearance of ballistic by a ring with a diameter as small as 5 nm, the associated
current vortices is clear. At this energy a vortex-antivortex magnetic field would be roughly 5 X 10 - 5 T. Thus, under
pair forms in the cavity. Figure 4 illustrates the current rather optimistic assumptions the magnetic field generated
density in the cavity at the transmission maxima which by the current vortices is very small.
occurs when kd/lr = 1.855. Four vortices of alternating Hydrodynamic vortices occur because of interactions
sign appear across the width of the cavity. Transmission at between particles. In this one-electron Schrodinger model,
this energy is greater than 97%. Notice that in the center electron-electron interactions have been neglected. An im-
of the cavity, current flow changes sign and electrons ac- proved theory would include electron-electron intervaions
tually flow back toward the input. The primary forward at least in the Hartree sense, to account for the accumula-
current path is split between two symmetric paths around tion of charge in the cavity. Because current densities are
the center of the cavity. At other energies different patterns so low in these systems, such an improvement is unlikely to
of vortex excitations occur. Even in the limited energy alter the basic results.
range shown, excitations with up to eight vortices in the The simple model of the confining potential used here
cavity appear. Excitation of the current vortices is not li- is sufficient to illustrate the important features of current
ited to special resonance energies. However, the magnitude vortex formation. More realistic potentials involve less
of the vortex current is much larger at resonances. abrupt comers and walls with quadratic, rather than infi-

The appearance of the strong vortex excitations is par- nite, potentials."1 The formation of current vortices per-
ticularly interesting at the zeros of the transmission coef- sists, indeed is even enhanced, in softer and rounder po-
ficient when the conductance of the cavity vanishes. The tentials. A detailed comparison will be given elsewhere.
current flows in from the input lead, circulates in the vor- In summary, current transport through a cavity in a
tex patterns, and then returns via the same lead. The trans- quantum electron waveguide has been examined. Current
mitred current is zero and the net current m the input lead in the cavity circulates to form vortices. Vortex formation
is zero. The incoming current is totally reflected, but drives occurs even when the conductance of the cavity vanishes
circulating currents in the cavity. This type of excitation and all current is reflected.
clearly has no hydrodynamic analogue. One might expect I would like to thank Professor Gerald Arnold for
that the total charge in the cavity would increase due to the helpful discussions. This work was supported by the Air
presence of the vortex currents. Indeed, it is shown else- Force Office of Scientific Research and by the National
where that the charge in the cavity increases significantly Science Foundation under grant No. ECS890025 through
at the resonance conditions.' 0  the National Center for Computational Electronics, and
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channels. Consider the case of unity transmission through 2081 (1988).
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The problems of Anderson localization and universal conductance fluctuations have been treated in the past with theoretical
techniques that did not usually include evanescent states in the analysis. In this paper, we have examined the effect of evanescent
states on electron transport through a disordered structure using a novel generalized scattering matrix formalism. We find that
evanescent states have a significant influence on the resistance of a disordered sample. especially when the degree of disorder is large.
We also find that neglecting evanescent states in theoretical calculations can lead to a substantial error in the estimation of the
localization length in realistic semiconductor structures.

I. Introduction Secondly. their amplitudes decay exponentially
with distance. characteristically as e" ' . Conse-

Electron transport in disordered mesoscopic quently, their influence on the overall electronic
systems has been modeled in the past with a wavefunction inside any disordered structure is
variety of techniques that explicitly took into expected to be negligibly small if Kd *- I (where K
account the quantum-mechanical wave nature of is the imaginary part of the electron's wavevector
electrons. They include the Anderson tight-bind- and d is the average spacing between elastic
ing Hamiltonian formalism [1), various Green's scatterers along the direction of current flow).
function methods (21 and scattering matrix ap- While the second rationale certainly holds true for
proaches 13]. Most of these techniques however structures that are modulation doped (in which
have neglected to include evanescent states in the Kd :-, I even for the lowest lying evanescent states),
analysis. even though these states are valid solu- it is unlikely to hold for either metallic structures,
tions of the Schrdlinger equation governing trans- or Si MOSFET's. or even intentionally doped
port. The rationale for this has been twofold: GaAs structures in which most of the pertinent
firstly, the evanescent states do not themselves experiments of quantum transport have been per-
carry current: therefore they are unlikely to affect formed [4]. In the latter structures. it is quite likely
a sample's conductance in a significant manner. that Kd < 1. Therefore. in the analysis of such

structures. it is imperative to include evanescent

Permanent address: Department of Electrical and Computer states in the theoretical model. These states may
Engineering. University of Cincinnati. Cincinnati,. OH 45221. not themselves carry current, but they can still
USA. influence the conductance of a sample by affecting
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the phase-relationships between the various cur- - L - ,
rent-carrying states. a+ b+

Recently, the inclusion of evanescent states in a- -

quantum transport models has been reported in
the literature for both ballistic [5] and diffusive
transport [6]. In this paper. we report an alternate
technique for including evanescent states in trans-
port calculations. Our approach is based on a1

generalized scattering matrix formalism which is
an extension of the method reported in ref. [3]. In . . ..
the next section. we describe our method which is Y
generally applicable to any arbitrary structure. IPl I [p1P I31 (P4 1 [p51

X IsiJ [s2  [s3l [s4

2. Theory

We consider a quasi one-dimensional dis-
ordered resistor with an infinite confining poten- E
tial in the Y-direction (see fig. 1). The current
flows in the x-direction. The quantum confine-
ment in the y-direction gives rise to a set of
transverse subbands in the left and right contacts
whose wavefunctions are given by EF,/,(x, y, t) = ,,.(y) e '"e -'Etlh ,  (1)

where m is the subband index and the + or -
sign refers to electron propagation to the right or
left. The wavefunctions 0,,,(y) are "particle-in-a-
box" states for this problem. kx

We assume a parabolic dispersion relation for Fig. 1. A quasi-ID resistor with a random distribution of
each subband impunties. The transverse subbands are shown in the figure.

E = e, + h2k ,/2t * (2) The subbands that give rise to evanescent states at the Fermi
level are denoted by dashed lines.

where e,, is the energy at the bottom of the mth
subband. Any state at a given energy E is labeled
by its wavevector k, which can be either real or where tm,,.,.( E = EF) is the amplitude of transmis-
imaginary depending on whether the state is sion and r,,(E = EF) is the amplitude of reflec-
"propagating" (E > 4e,) or "evanescent" (E < C,). tion for an electron at the Fermi level E F, travel-

At low enough temperatures and in the linear ing from a left subband with index m to a right
response regime, the 2- and 4-probe Landauer subband with index m'. The quantity M in eqs.
resistances of the structure are given by (3) and (4) is the total number of propagating

-I states at the Fermi level. The summations overm
2t(E= E) and m' are carried out only over the propagating

= n- ' m states. The evanescent states are not included in

(3) the sum since they do not themselves carry current
and hence do not contribute directly to the con-

e 2  , ,  t,,,2e.,,(E = EF) 2 - ductance (or resistance). However these states are
4-probe j 2 

" ,t% 2-i r,,,( E E) 21z , taken into account when calculating t.,,,(E - EF). Fand r.m,(E - EF). They affect the transmission

(4) and reflection coefficients of the propagating
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states. i.e. t,,,,.,(E = EF) and r,,,.,(E = EF). and In the next section we present some numerical
hence influence the conductance or resistance in- results to illustrate the influence of evanescent
directlv. As we shall see later, this indirect in- states on the 2- and 4-probe resistances of quasi
fluence can be quite significant. one-dimensional disordered samples in the strong

In order to calculate the resistance R. we sim- and weak localization regimes.
ply need to calculate t,,,.,(EF) and r,.,(EF).
For this purpose. we adopt the basic approach
presented in ref. [3]. The transmission and reflec- 3. Numerical example
tion amplitudes t,,,. and r,,,., can be found from
the overall scattering matrix [S] describing propa- We examine the length dependences of the
gation through the entire structure. The matrix is] resistances of two disordered GaAs samples in
is determined as follows. The structure is first connection with the scaling theory of localization
decomposed into a number of spatial sections [7]. Each sample is 300 A wide. with impurity
along the x-direction. Each section contains either concentrations of N, = 10"/cm- and N. =
an impurity (scattering center) or a region of free 1012/cmZ. respectively. In both samples. the Fermi
propagation between two adjacent impurities (see energy EF is made equal to the polar optical
fig. 1). The scattering matrix for each section can phonon energy in GaAs (= 36 meV). This makes
be found analytically [3]. The overall scattering the carrier concentration equal to 2.4 X 1012/cm 2

matrix [S] is then found by cascading the scatter- and the number of propagating states at the Fermi
ing matrices for the individual sections according level M = 2.
to the recipe presented in ref. 13]: Fig. 2 shows the dependences of the 2- and

SI [5] =IP] ® [ 1 ] ® P,] ® [ ] ® S .2 (5) 4-probe resistances on the sample length. For the
sample with the lower impurity concentration of

where [s,] is the scattering matrix associated with lol/cm2 , we had to include 40 evanescent states
the ith scatterer along the x-direction and [P,] is in the calculation to achieve convergence of the
the scattering matrix for the region of free-propa- results; while for the sample with the higher im-
gation between the ith and (i + l)th scatterer. purity concentration of 1012/cm. , we needed 100
Both Is,] and (pJ are 2(M+N)x2(M+N) evanescent states. In both cases, the number of
matrices where M is the number of propagating evanescent states required to achieve convergence
modes and N is the number of evanescent modes exceeded by far the number of propagating states.
at the Fermi level that are included in the analysis. In both samples, the imaginary part of the wave-

Ref. (3] gives explicit forms for the matrices [s,] vector ic for the lowest evanescent state is 1.537 X
and (p,]. These forms are perfectly general and 106/cm. For the first sample with impurity con-
valid for both propagating and evanescent states. centration N1, the average spacing between the
We have used the same forms in this paper. impurities is d, = (NW) - ' = 333 A whereas in

Once the overall matrix [S] is determined, the second sample, the average spacing is d,
t,...(E F) and r,...(EF) are found from ap- (N,W)-1 = 33 A. Therefore Kdl Sand Kd, -0.5.
propriate elements of the matrix (S]. From these In neither case is the condition Kd -D 1 satisfied.
coefficients, one can evaluate the resistance R of so that we had to include a large number of
the structure using eqs. (3) and (4). It should be evanescent states in both cases to achieve conver-
noted that when evanescent states are included, gence. These two examples illustrate uniquely the
the matrix (5] is no longer unitary, however, importance of including evanescent states in theo-
current conservation still required that retical calculations.
V From fig. 2, we find that evanescent states haveE It,,m(EF) 2 + lr,n'.m(EF) 2 = 1 (6) two effects on the resistance. Firstly, the fluctua-tions in the resistance are somewhat reduced - at

of propagating states. immediately implies that it is important to include

I
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Fig. 2. Resistance versus length for a disordered quasi-ID GaAs structure. The fluctuations in the resistance are fingerpnts of the
i impurity configuration and arise for the same reason as "universal conductance fluctuations". The number n is the number of

evanescent states that were included in calculating the results. The curve labeled C is the classical result f Ohm's Law) which was
calculated by cascading "probability scattering matrices" rather than "amplitude scattering ematrice¢s" as described in ref. [3]. Thenon-zero value of R2.pN=0 at L - 0 is the "contact resistance 2

evanescent states in calculating dhe rms value of lated resistance is expected to be higher because of
"universal conductance fluctuations". Secondly, the Anderson localization effect or the so-called

I on the average, the absolute value of the resistance coherent backscattering effect (8J. But in theUis also reduced. We believe that this reduction is 'quasi-ballistic" regime, the effect of Anderson
caused by tunneling between the impurity sites localization is weak enough that tunneling can

I whose overall effect is to enhance the transmission offset it and make the quantum-mechanically
probability and reduce the reflection probability calculated resistance lower, A more detailed cx-
thereby decreasing the resistance. The involvement amination of this effect will be presented in a

i of tunneling is further suguested by the fact that forthcoming publication.
in the weakly disordered sample (N1 - lO"i/cmi2 ), Finally, another important issue that merits
the quantum-mechanically calculated resistance is discussion is the effect of including evanescent
actually fower than the classical resistance at small states in estimating the localization length in dis-

I lengths. Usually the quantum-mechanically calcu- ordered samples. We have estimated the iocaliza-

I
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tion length L,,, for both samples by following the tract No. F49620-87-C-0055. The work at Notre
prescription of Thouless [9]. For the first sample, Dame was supported by the same agency under
the value of L,,, was estimated to be - 4 Am Grant No. AFOSR 88-0096 and by an IBM Fa-
before including evanescent states and - 14 Am culty Development Award.
after including evanescent states; whereas for the
second sample, these two values were - 7000 A
and - 1.6 Am respectively. This shows that exclu- References
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THE GENERALIZED SCATTERING MATRIX APPROACH: ANEFFICIENT TECHNIQUE FOR MODELING QUANTUM TRANSPORT INRELATIVELY LARGE AND HEAVILY DOPED STRUCTURES
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Over the past few years, a number of theoretical techniques have appeared in the
literature for simulating phase-coherent electron transport through disordered meso-
scopic structures. Notable among these are the Green's function methods [1] and
transfer matrix approaches (2]. In this paper, we discuss an alternate technique -
the generalized scauering matrix approach - which is ideal for studying transport
through relatively large and heavily doped structures. Unlike the Green's function
method which has a computational cost proportional to (NL)4 and a storage re-quirement proportonal to (NL) 2 (N is the number of dopants or scattering centers
in the strucure and L is the structure's Imp), the scattering matrix technique has
a computational cost proportional to (NL) and a storage requirement proportional
to (NL) [3]. The reduced storage requirement is a highly desirable feature in a
supexomputing environment since it decreases the number of small page faults and
input/output operations which then reduces the real time of computation'. Conse-
quently, the scattering matrix technique is optimal for treating those problems that
require simulating transport in relatively large and heavily doped strucuires.

In the next section. we first briefly describe the scattering matrix technique. We
then present results from our study of the scaling theory of 4-probe Landauer resis-
tances of disordered mesoscopic structures which we have studied using this tech-
nique. Finally, we compare the scattering matrix technique with other computational
techniques that are currently in vogue.
Scattering Matrix Technique: The details of this technique have been presented
elsewhere [4). We report here only the basic features. In this method, a disordered
structure is first broken up into a number of sections along its length such that each
section either contains an impurity (elastic scattering center) or is a region of ballistic
propagation between two successive impurities. For each section. a scattering matrixis then constructed which relates the amplitudes of the incoming to the outgoingwaves for every mode. It is possible to construct such a scattering matrix for any

aribitrary shape of the impurity potential. These matrices are then cascaded according

I The tramfer matrix technique also has a computational cost proportional to (NL) 3 and
a storage requirement proportional to (NL), but it is unfortunately numencally singular for
all but the smallest structures (with dimensions a few times the DeBroglie wavelength).

II

I
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to the law of composition of scattering matrices (4] to yield the overall scattering
matrix for the entire structure. From this overall scattering matrix, one immediately
obtains the transmission amplitudes for all the propagating modes which can then
be used in either the multichannel Landauer formula to obtain the resistance of the
structure in the linear response regime, or in the Tsu-Esaki formula to obtain the
current in the non-linear (but phase-coherent) regime.

In the next section, we present results from our study of the length dependence
of the 4-probe Landauer resistances of GaAs mesas in the threshold regime cor-
responding to the transition from weak to strong localization. The mesas are 300
X wide with an impurity concentration of 1012 cm - 2 and a carrier concentration of
also 1012 cm-3 . The impurities are assumed to be delta-scatterers. Two subbands
are occupied in these structures at a temperature of 0 K.

Anderson localization in quasi one-dimensional structures: In Fig. 1 we plot the
resistance of the structure as a function of its length. The solid lines are the results of a
classical calculation (obtained by cascading probability scattering matrices rather than
amplitude scattering matrices) and essentially reproduce Ohm's Law. The two broken
lines in each figure are quantum-mechanical results obtained by cascading amplitude
scattering matrices. The longdashed line corresponds to the case when no evanescent
modes were included in the calculation and the shorUlashed line corresponds to
the case when 100 evanescent modes were included. In all cases, including 100
evanescent modes was sufficient to achieve convergence. Fig. 1(a) represents the
case when the scattering potential is attractive while 1(b) represents the case when
the potential is repulsive. In n-type GaAs structures, it is common to find both
attractive and repulsive scatterers arising from donors and background acceptors [5].

From Fig. I we find that when the scattering potential is attractive, the localiza-
tion length2 is - 1550 X whereas for a repulsive scattering potential (of the same
magnitude but opposite sign), it is - 5500 X. In localization theory, the elastic mean-
free-path is given by the localization length divided by the number of propagating
modes, so that the elastic mean-free-paths in the case of attractive and repulsive
scaterers are 775 X, and 2750 X respectively. The dependence of the elastic
mean-free-path (and hence the mobility) on the sign of the scattering potential is
an interesting result since it is not predicted by such formalisms as Fermi's Golden
Rulea .

One of the most important features in Fig. I is the effect of evanescent modes
on the quantum-mechanically calculated resistances. The importance of these modes
has been previously discussed by Bagwell [6] and us [7]. Note that for attractive
potentials, the inclusion of evanescent modes increases the resistance; whereas for
repulsive potentials, the resistance is decreased. It was shown in Ref. 6 that the effect
of evanescent states is to renormalize the coupling between the propagating states in
such a way as to increase the overall transmission in the case of repulsive scattering
potentials and decrease it for attractive poentials. Consequently, evanescent modes
increase the resistance and decrease the localization length for attractive scatterers
while doing the opposite for repulsive scatterers.

2This is the length at which the resistance crosses the value h/e 2 and the length dependence
changes from linear to exponential.

'This may have important implications for the mobilities of highly compemated struct-rs

that have both donor- and acceptor-type impurities

2I
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Comparison of the computational costs for the study of Anderson localization
in wide structures: Before concluding this paper, we will discuss the computa-
tional costs involved in studying problems such as the scaling theory of Anderson
localization in relatively wide structures. In doing so, we will compare the Green's
function method with the scattering matrix method in terms of their relative compu-
tational efficiency. In the Green's function technique, one would solve the perunent

Schrodinger equation on a nearest-neighbor tight-binding lattice which requires the
inversion of a N x N matrix for every impurity, N being the number of grid points
along the width of the structure. The number of grid points is proportional to the
width W so that one has to invert a matrix of size proportional to W (at a com-
putational cost -W 3) as many times as there are impurities in the system. The
number of impurities in the system is proportional to W 2. To see this, consider the
fact that the localization length increases linearly with the number of propagating
modes in the system which means that it is approximately proportona to the width.
Therefore, the length of the structure that one needs to simulate in order to observe
the onset of strong localization is also approximately proportional to W, and conse-
quently the area (and hence the number of impurities) is proportional to W 2 . The
net computational cost is therefore proportional to W3 x W 2 = W 5 .

Let us now consider the scattering matrix technique. Here one has also to invert
a matrix of size N x N as many times as there are impurities in the system, but in
this case, the number N is the total number of modes (propagating + evanescent)
required to achieve convergence. We will show that this number is independent of
the width W. To see this, consider the fact that the convergence criterion is given
by (6]

Q *nY (1)

where Q is a number much larger than unity, ic, is the (imaginary) wavevector of the
nth (highest lying) evanescent state included in the calculation and -f is the strength
of the impurity interaction potential. We therefore have

,2  2 h 2  h2 (my 2

E2m + 2m ;_- (2)

This gives

n= N = Ineger L Qmh J (3)

which is independent of the width W. Consequently, the size of the matrix is
independent of the width W (although the number of impurities is still proportional to
W 2 ), so that the net computational cost is - W 2 . The scattering matrix technique is
therefore far superior te Green's function techniques for simulating transport through
relatively wide structures.

REFERENCES

(1]. P. A. Lee and D. S. Fisher, Phys. Rev. Lett., 47, 882 (1981).

[2]. E. Abrahams and M. Stephens, J. Phys. C, 13, .377 (1980); M. Ya Azbel.
Phys. Rev. B. 28, 4106 (1983).

3



[3]. D. S. Fisher and P. A. Lee, Phys. Rev. B, 23, 6851 (1981).

[4]. S. Daa. M. Cahay and M. McLennan. Phys. Rev. B, 36, 5655 (1987); M.
Cahay, M. McLennan and S. Datta. Phys. Rev. B, 37, 10125 (1988).

[5]. R. J. Haug, K. v. Klitzing and K. Ploog, Phys. Rev. B, 3S. 5933 (1987).

[6]. P. F. Bagwell (prepnnt also to appear in Phys. Rev. B).

[7]. M. Cahay, S. Bandyopadhyay, M. A. Osmnan and H. L. Grubin, (to appear in
Suface Science.

(a)100ev modes

IIV

1

I ."4. -. -.

0 2000 4000 600 80 000

length (angstroms)
(b)

48

I le gt 
mod=o s

no e. ~

0 2000 4=0 6000 8000 I00

i Fig 1: 4-probe Landtauer resstance vs. lengt: (a) the scattering potential is

attracve and (b) the scattering potental is repulsive.

I
UI



I
Reprinted from COMPUTATIONAL ELECTRONICS: Eds. K. ",ess, J. P. Leburton and
U. Ravaioli,(Kluwer Academic Press) 1990

NUMERICAL STUDY OF THE HIGHER ORDER MOMENTS OF
CONDUCTANCE FLUCTUATIONS IN MESOSCOPIC STRUCTURES

M. Cahaya, P. Marzoif6 and S. Bandyopadhyay6

'Nanoelectronics Laboratory and
Department of Electrical and Computer Engineering
University of Cincinnati
Cincinnati, Ohio 45221

'Department of Electrical and Computer Engineering

University of Notre Dame
Notre Dame, Indiana 46556

It is well-known that the conductance of a disordered mesoscopic structure ex-
hibits sample-specific fluctuations in a magneuc field due to quantum interference
effects I I]. The magnetic field changes the phase-relationships between the various
Feynman trajectories in the structure thereby causing the conductance to fluctuate. In
this paper, we have performed a numerical study of conductance fluctuations. Insteadof using a magnetic field, we have induced the fluctuations by randomly altering the

impurity configuration within the structre. Changing the impurity configuration has
the same effect as applying a magnetic field since both ater the phase-relationships
between the various Feynman paths which causes the conductance to fluctuate'. In
addition to studying the fluctuations, we have also examined the probability distri-
bution of the 2-probe Landauer conductance= and calculated various moments of
the distribution. As expected, we find that the second moment of the distribution
(the standard deviation or the rms value of the fluctuations) is close to the claimed
universal value of e2/h [21, but its exact magnitude is somewhat affected by the
presence of evanescent states.

In the next section, we first describe our simulation procedure. We then present
results, and finally conclude with discussions about the probability distribution and
its various moments.

Simulation Procedure: For calculating the conductance of a disordered structure, we
have employed the scattering matrix technique (3]. The structure that was simulated
is a 1.2 pm long and 2000 A, wide GaAs mesa. The Fermi energy is 36 mev and
the impurity concentration is 1012 cm- 2. The impurities are assumed to be delta
scattirers. Fifteen su,,bands are occupied in this structure at a temperature of 0 K.

For purposes of simulating samples with different impurity configurations, we
have adopted the following numerically efficient scheme. Instead of varying the
configuration throughout the entire structure, we first break up the structure into six
equally long sections. We then cascade the scattering matrices for these six sections
in all possible permutations. This procedure gives us a total of 6! = 720 different
impurity configurations, or equivalently, 720 different samples to simulate. We have

I The fluctuations caused by a varying magnetic field and by a randomly changing impu-
rity configuration are statistically equivalent in all respects. This is known as the "ergodic
hypothesis".



then constructed histograms from these 720 samples for the 2-probe Landauer con-
ductances of the enure structure. From these histograms we have finally calculated
the first six moments of the conductance distribution.

Results: Figs. 1(a) - 1(b) show the histograms of the 2-probe Landauer conduc-
tances when the scattering potential is auracuve. The first figure corresponds to the
case when no evanescent modes were included in the simulation and the second
corresponds to the situation when 30 evanescent modes were included. Figs. l(c) -
I (d) show the corresponding histograms for the case when the scattering potential is
repulsive.

Discussion: The histograms are all approximauiteLy Gaussian. The table in the last
page lists the various moments of the distribution. The moments are defined by
the relation M, = (I (G" - (G')) 1)1/- , where M. is the nth moment. G is the
conductance, and the angular brackets denote ensemble average. Note that the effect
of evanescent states is to decrease all the moments when the scattering potentia
is attractive. On the other hand, if the potential is repulsive, the odd moments
are increased while the even moments are decreased. The origin of this feature is
currently under investigation.

The second moment of the distribution has a value - 0 (e 2 /h) which agrees
qualitatively with the universality theory [2]. It is interesting to note however that
the exact value is somewhat affected by the presence of evanescent states. To ourknowledge, this is the first systematic study of the higher order moments of the
conductance flucuaio in realistic semiconductor structures.I (a)
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Fig 1: Histograms showing the probabiity distribuzion of 2-probe Landauer conduc-
tances. (a) and (b): the scauerng potential is attractive; (c) and (d): the scattering
potental is repulsve.

Table showing the moments of the conductance distribution

Scat. potental AUracuve Auractve Repulsive Repulsive
No. of prop. modes 15 15 15 15
No. of ev. modes 0 30 0 30

< G > '18.84 eZ/h 12.86 ey1h 17.90 e/h -2I.3 7/h
2nd. moment 0.50 e/h 0.63 e2/h 0.45 e2/h 0.43 e2/h

3rd. moment 0.14 e2/h 0.31 e2/h 0.16 e2/h 0.18 e2/h
4th. moment 0.65 e2/h 0.83 e2/h 0.60 e2/h 0.56 e2/h5th. moment 0.29 e2/h 0.64 e2/h 0.29 e2/h 0.43 e2/h6th. moment 0.76 e2 /h 0.98 e2/h 0.70 e 2 /h 0.66 e 2/h
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Edge states in a circular quantum dot
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The wave functions and currents in a circular quantum dot in a perpendicular magnetic field are
calculated. The current in condensed (high-field) eigenstates is composed of concentric rings of
current flowing in opposite directions. The current flow near the dot center flows in the direction
opposite that expected from the Lorentz force. It is this inner circulation tlat is responsible for the
"reverse" current flow associated with edge states. The correspondence between the quantum-
mechanical currents and classical-particle trajectories is examined.

I. INTRODUCTION Berggren.'1 The calculation is performed in the frame-
. work of a single-band effective-mass model, neglecting

Under a perpendicular applied magnetic field, the electron-electron interactions and ignoring spin effects.
unconfined states of a two-dimensional electron gas Results for the circular dot which is completely confined
(2DEG) form infinitely degenerate Landau levels whose in the plane are applicable directly to a cylindrical quan-
energy increases linearly with the applied field. The turn wire. Fabrication of such structures has been report-
Landau-level eigenstates can be thought of as localized ed by Reed and co-workers. 5

states corresponding to the cyclotron orbits of classical
electrons. If the 2DEG is confined further in the plane
by a potential barrier, the energy of the states near the II. THEORY
boundary will be altered. Further, it has long been recog- We consider the bound states of a particle in a two-
nized that states near the boundary produce a current dimensional circular quantum dot with an applied mag-
which flows in a direction opposite to the circulation of netic field described by a vector potential A. The canoni-
inner orbits. These edge states, and their importance as a cal momentum is given by
paramagnetic correction to the Landau diamagnetism,
were discussed by Darwin, I who considered electrons in a P=m *V+q A . (I)
parabolic confinir. , potential for which analytic solutions

1 exist. Further investigation of the effects of the edge The effective-mass Hamiltonian for such a particle bound
states was done 'y Dingle,2 and more recently, by Rob- in an axially symmetric potential V, is
nik.'

Interest in the behavior of small systems which are H l(P-q A) 2 + V, . (2)
confined in three dimensions has been stimulated by the 2m

fabrication of inuividual dots and quantum-dot arrays in A completely unconstrained 2DEG in an applied magnet-
semiconductors.4 - ' Kumar. Laux. and Stern have solved ic field is described by the Landau Hamiltonian HL,
the Schr6dinger and Poisson equations self-consistently I
in three dimensions to obtain the electronic states for a HL = -- (P-q A) 2 . (3)
quantum dot in a magnetic field.8 Maksym and Chakra- 2m
borty have exarr ned the effects of electron-electron in- We examine the case of a perpendicular magnetic field
teractions in paraoolic dots.9  B= V X A = B0 and use the symmetric gauge for the

In this paper ,,e examine the one-electron states of a vector potential:
circular dot in a magnetic field. We take a simpler ap-
proach than Ku, ,ar, Laux, and Stern, using a fixed po- A-(-Boy/2,Box/2,0) . (4)
tential and assuir :ng complete confinement in the plane The Hamiltonian can then be written in the form
of the 2DEG. Attention is focused here on tne currents
induced by the applied field and the correspondence be- _ *_ W2

tween the quantum-mechanical results and classical cy- H =- (2 +P2 )+ _L + (X2 +Y 2 )+V,
clotron orbits. Our aim is to establish the precise nature 2m * 2 z 8

of edge states and their relationship to the classical "skip- (5)
ping" orbits. The self-consistent potential obtained by
Kumar, Laux, and Stern can be approximated by a flat where L: is the operator associated with the z component

potential with parabolic walls. Afte- examining the of angular momentum
hard-wall boundary case, we consider the effect of such L. =Xf, - YP, (6)
soft walls. The numerical approach used here is similar "
to that of Stikova, Smrcka, and Isihara, 0 and Weisz and and

43 4179 © 1991 The American Physical Society
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- qBn 20,

in - .. /.
6 ...9.ef "S.,

is the cyclotron frequency defined so that an electron has is 1..... .,4:.
a positive co, corresponding to a counterclockwise orbit *.

in the plane. * .. o * *o* °..o ** oo °*.

The bound states of the quantum dot (for any field) can 0, * i..oa: M

be labeled by the radial quantum number n, and the an- w .. "
gular quantum number m. At zero magnetic field, the L.- **

-

Hamiltonian is symmetric under time reversal so that 0 "
E(n,,m)=E(n.,mt). The application of the magnetic - -------

field breaks this symmetry and the energy of positive-m "
states increase while negative-m states are lowered. The
perturbation is dominated for low fields by the term 0
linear in the field. The resulting splitting is due to the fa- 0 s 10 15 20 25 30 35

miliar paramagnetic interaction between a magnetic di-
pole and the applied field. As the field increases the (di-
amagnetici quadratic term in (5), due to the induced FIG. 1. Bound-state energy levels of a circular quantum dot
current, becomes significant. Negative-m states which in- as a function of applied magnetic field, O=eBirR"/rn. The en-iiiywere reue nenergy, bei oices n o rgies are in units of E., the zero-field ground-state energy.itially weereduced in ergbegin to increase and com- erisaenuitofE)thzr-ildgudsaeeegy

bine together, undergoing a transition from paramagnetic
states to diamagnetic states at a field strength which de-
pends on rn. The negative-rn states which have under-
gone this transition combine with nL i- 1 states with posi-
tive or zero rn (states that are always diamagnetic) to form the first three Landau levels are enumerated below:
form the degenerate Landau levels (labeled by quantum nL =0
number nL ). We refer to the coalescence of these energy
levels as "Landau condensation" after Robnik.3  i, =0, m =0, - 1, -2,..., -

III. NUMERICAL RESULTS n , r0, m =1

nl1, m =0,-1,--2,. - (9)
A. Energy levels

We begin by examining the quantum dot with infinite nL=2, nr=0, n=2
hard walls. The potential V, is zero if r < R and infinite n, = 1, n
otherwise. The effective-mass Schr6dinger equation for 2 m =0, - 1, -2. -

the Hamiltonian given by (2) was solved numerically us-
ing the finite element method. An effective mass of The condensation seen here does not occur in confining
0.05mto was used. The symmetric gauge given by Eq. (4) potentials which are parabolic. In such a potential the
was used. The discretization was performed on a square magnetic localization is never sufficient to isolate the
49 X 49 node mesh. Eigenfunctions and eigenvalues were electron from the walls. Parabolic potentials may be
calculated using the subspace iteration technique for the more appropriate for some dot structures examined ex-
lowest 20 eigenstates. perimentally.12' 13 Further, Demel et al.13 have measured

Figure I shows the eigenvalue spectrum as a function anticrossing of the energy levels in contrast to the cross-
of applied magnetic field for the first 20 eigenstates. The ing behavior in Fig. 1. They interpret these results as due
calculation was performed for a dot with radius R -=500 to electron-electron interactions which are absent in our
A. Because all of the results scale with the de Broglie model.
wavelength of the electron, they can be represented in a
dimensionless form by appropriately scaling the energies B. Current flow
and magnetic fields. The eigenenergies are scaled to E0,
the energy of the zero-field ground state. The magnetic For each eigenstate. the particle (probability) current is

field is plotted as the dimensionless quantity calculated from the computed wave functions i,(x,y), us-

eB -R (8) ing the relations.e~rrR 2 (8) (0
- j=jo+J 4 ,(10

For the 500-,k dot. /3=35 corresponds to 9.21 T and j0=  (11)
E= 1.8 meV. 2m

The condensation of the bound state, of the dot into 1
degenerate Landau levels is clearly evident in the figure. jA= e Alibi2 • (12)
At every value of the applied field, n, and m remain good rn

quantum numbers. The components which merge to These relations are for electrons and the symbol e

U
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represents the magnitude of the electronic charge. Writ-
ing the current this way separates the contribution of the
wave function from that of the vector potential. This .

division, though gauge dependent, is helpful in under-

standing the nature of the eigenstates.
Figures 2-6 show the calculated current density in the

* dot and the probability density &' across the dot center
for several eigenstates at a field of B =5 T (0 = 19). Fig-
ures 2 and 3 show the current for the m =0 and m 2
states of the first Landau level. At this field, these states
have already condensed (i.e., become degenerate with
other states at the energy of a Landau level). Figure 4
shows the uncondensed m 7. nL =0 level. The un-
condensed nL = 1, m =0, and m =-3 states are shown "

in Figs. 5 and 6.
The current flows depicted in the figures are not all n=0m =-2

easily explained by appealing to the usual classical-orbit L
notions. The condensed m =0 state shown in Fig. 2 cor-
responds to the classical picture of counterclockwise or- FIG. 3. Probability currents for the n L 0, m =-2 eigen-

bit caused by the Lorenz force on the electron. The state of a circular quantum dot. The magnetic field corresponds
negative-m state shown in Fig. 3 is somewhat more to #= 19.0. The probability density across the dot center is
surprising. Rather than a central, counterclockwise shown in the upper portion of the figure.
current, we see a clockwise circulation in the center, sur-
rounded by a counterclockwise outer current. This is
characteristic of all the condensed negative-m states. The interior current which is clockwise. Below, we examine
literature has frequently invoked the concept of "edge the quantum-mechanical argument for these, at first
states" which corresponds to classical orbits that skip surprising, current-flow patterns. We then discuss the
along the perimeter and thus carry the (particle) current correspondence between the quantum wave functions and
clockwise, opposite that of the counterclockwise current the classical orbits.
induced in the bulklike central region. One might expect The current j0 can be written in terms of 4, the corn-

to see these edge states characterized by a clockwise plex phase of the wave function, and the probability den-
current in the perimeter (edge) region of the dot. The sity n(r)=IJ0 2,
n L =0, m = -7 state depicted in Fig. 4 corresponds to
this idea. The uncondensed nL = 1, m = -3 state in Fig. j0(r)_ n rV4'(r) (13)
6 should also be an edge state. Yet it has a weak perime- rn

ter current which is counterclockwise (bulklike) and an Since each eigenstate of H is an eigenstate of L, with ei-

2Cu C

a L=0 m=0 n L=0 m=-7

o 0

FIG. 2. Probability currents for the nt =0, m =0 eigenstate
of a circular quantum dot. The magnetic field corresponds to FIG. 4. Probability currents for the nL =0, m -7 eigen-

0=-- 19. 0 (B = 5 T for a dot with 500-A radius). The probability state of a circular quantum dot. The magnetic field corresponds
density across the dot center is shown in the upper portion of to 6-- 19.0. The probability density across the dot center is

the figure. shown in the upper portion of the figure.
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- j For states with m > 0, both jo and j A are positive, i.e.,
the current flows in the counterclockwise direction. This

S/-is the direction in which a classical electron would circu-
late in response Lo the Lorentz force from the magnetic
field. For states with negative m, however, j0 circulates
in the clockwise direction. The nonzero i A is in the op-
posite direction and increases with radial distance r. The
competition between these two terms results in the con-
centric rings of current moving in opposite senses as seen

*. in Figs. 3, 5, and 6. The r dependence in (15) means that
the current always flows counterclockwise at large

- 'enough r, provided the probability density has not van-

ished. At small values of r, the j0 term must always dom-
inate and leads to the current circulating in a clockwise

Isense near the dot center.
n = I m=0 If the wall boundary at the dot perimeter were not

present, all the negative-m states would look similar to
the condensed states-a counterclockwise circulating

FIG. 5. Probability currents for the nL = 1, m =0 eigenstate outer ring and a clockwise inner ring. The presence of
of a circular quantum dot. The magnetic field corresponds to the wall reduces the probability density near the perime-
/3= 19.0. The probability density across the dot center is shown ter and effectively blocks the outer ring, leaving only the
in the upper portion of the figure. clockwise inner ring. At a high enough field, the magnet-

ic field localizes the state closer to the dot center. This

genvalue mfi, we can write the complex phase in polar "restores" the outer ring of current by moving it inward

coordinates as 4(r, 9) n 0. Therefore, from the wall region and results in bulklike behavior.
The transition between edge states and bulk states does

S (r(14) not occur by shrinking a current ring going the "wrong"
m (14 direction 14 and then reversing it as it comes near the dot

Siocenter. Rather it occurs by restoring a ring of current go-
where 0 is the unit vector in the 0 direction. The zero- ing the "right" direction which has been suppressed by
field current of the eigenstate is simply a circulation its proximity to the outer edge. The circulation going the
around the origin which is proportional to the angular -wrong" direction is in the center and remains there in
momentum. In polar coordinates, the explicitly field- the condensed bulklike states.
dependent part of the current can be written,

A ( n (r) . (M C. Connection to classical orbits
2m* In order to make clear the correspondence between the

quantum-mechanical current flows and classical orbits,
let us return to the case of unbound Landau levels de-

scribed by the Hamiltonian HL [Eq. (3) above]. We can
define operators X 0 and Yo which correspond to the clas-

20L sical centers of the cyclotron orbits, 15

........................ Vy, 16

O Y0= + V,. 1 17)
Oc

The operators V, and VY are defined by Eq. (D. The

operator r2 is then defined to be the operator corre-
sponding to the square of the distance from the origin to

toFI a"Te j m- the orbit center,

r2 =xo+ y. (18)

n = m=-3 If we take the Landau-level wave functions InL,m '
L which are eigenvalues of L:,

FIG. 6. Probability currents for the nL  1, m =-3 eigen- +1nLm ) =-y[nL'm (19)
i state of a circular quantum dot. The magnetic field oreponds yn 'm) -[2n.- m )+ I ]L' (20)

to O-19.0. The probability density across the dot center is
shown in the upper portion of the figure. where 1,2 is the eigenvalue of r2 and LH = vIt/eB is the

L.
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R(,©
0 (a) (b)

FIG. 7. The relationship between a, the cyclotron radius, (d)
and y, the radius of the orbit guide center. The origin is chosen
to be the center of the quantum dot. The dot radius is R. FIG. 8. Classical orbits for four increasing values of the mag-

netic field. The orbits (arrows), guide center (dotted), and dot
magnetic length. The classical cyclotron radius is wall (solid) are shown. In (a) the guide-center radius is equal to

represented by the operator the dot radius and only a clockwise current results. As the field
increases [(b)-(d)] the guide-center radius shrinks and a coun-

- 2 =(X -X,,) 2 + ( Y - Y")2  (21) terclockwise current develops around the dot perimeter, while
the clockwise current becomes localized near the dot center.

=L H  2 , (22) Orbits are chosen to correspond to specular reflection from the
walls.

so the eigenvalues are given by
proximate the value of the cyclotron radius for a particu-

X-InL,m ) =a-'nL,m ) , (23) lar eigenstate In,,m ) of H by using Eq. (22) to define

2 (nLM)=L4 2m* ,(nL ), a'(E)=L2 V2m*E/i 2  (26)

where we use for E the calculated energy E(n,,m). The
Figure 7 illustrates the relationship between y, a, and the wheete us n the e enegy ung ) To

orign a th do ceter Theanglarmomntu opra- guide-center radius can then be obtained by using (25) toorigin at the dot center. The angular momentum opera- construct an approximate value,

tor L is related to F 2 and 12 by
= ' y'(Em)=Va'2 (E)-2mLH, (27)

. 2L H2 where again we use the calculated value of the energy.
which is true classically as well. The effect of the dot walls is then included in the raising

In the unconfined Landau system, states with negative
angular momentum correspond to classical orbits with
centers displaced from the origin. Quantum mechanical-
ly, the position of the orbit center is not well defined since
one cannot construct states which are simultaneously ------

eigenstates of the operators X 0 , Yo, and H. The distance
y between the orbit center and the origin is a constant of
the motion both classically and quantum mechanically.
The cyclotron radius a is also a good quantum number.
The quantum wave function for a state with negative an-
gular momentum corresponds, then, to all possible classi-
cal orbits of radius a, which centers a distance y from
the origin. A circle of radius V, centered on the origin,
acts as the "guide center" for the classical orbits. As the
magnetic field increases, both y and a become smaller.
Another consequence of Eq. (20) is that states with
m =0, 1,2, . . . ,L will also correspond to classical orbits
with displaced orbit centers. FIG. 9. Probability current for the nL =0, m = -4 eigenstate

For the confined system, H = HL + V,, and Eqs. (20) of a circular quantum dot. The magnetic field corresponds to
and (24) are no longer strictly valid. For states which are 6= It. 4 (B = 3 T for a dot with 500-A radius). Classical orbits
already condensed and localized in the interior of the calculated using Eqs. (37) and (38) are superimposed on the nu-
quantum dot, they will be very nearly true. We can ap- merical solution.
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FIG. 10. Probability current for the n,. =0, m = -4 eigen- FIG. 12. Probability current for the nL =0, m =-4 eigen-
state of a circular quantum dot. The manetic field corresponds state of a circular quantum dot. The magnetic field corresponds
to 3= 15.2 (B =4 T for a dot with 500-A radius). Classical or- to 0=30.4 (B =8 T for a dot with 500-A radius). Classical or-
bits calculated using Eqs. (37) and (38) are superimposed on the bits calculated using Eqs. (37) and (38) are superimposed on the
numerical solution. numerical solution.

of the eigenenergies for states which are not yet con- 8(c) is not necessarily condensed, since its energy may
densed in the center. Equations (26) and (27) reduce to still be elevated by proximity to the dot wall.
(24) and (20) with the substitution E =(nL + -)fW,, Figures 9- 12 show the computed particle current for

The classical orbits for the circular dot corresponding the nL =0- m = -4 state at increasing magnetic fields.
to quantum-mechanical eigenstates of L. are illustrated The values of the field are B =3, 4, 5, and 8 T corre-
in Fig. 8 at various stages of Landau condensation. In sponding to 3=11.4, 15.2, 19.0, and 30.4. Across this
Fig. 8(a), the field is low and the guide-center radius range, the magnetic field transforms the state from purely
y =R. The orbits shown correspond to specular edge-type, Fig. 9, to the nearly completely condensed
reflection off the dot walls. The current is dominantly bulk-type state shown in Fig. 12. Superimposed on the
clockwise and characteristic of a pure edge state. The results of the Schr6dinger solution are the classical orbits
guide circle (dotted) in Fig. 8(b) is inside the dot, but the calculated using Eqs. (26) and (27). The relation between
orbit still corresponds to a skipping orbit, reflecting off the classical current flows due to the orbits and the quan-
the perimeter wall. Notice, however, that a counter- tum results verifies the explanation above and demon-
clockwise current exist in the outer region between the strates the utility of the quantities a' and ry' in describing
guide circle and the dot wail. The clockwise current as- the confined states. Orbits computed using the
sociated with the edge state in Fig. 8(a) has moved into unconfined 2DEG values a and y yield a much worse
the center of the dot. Figures 8(c) and 8(d) show the or- comparison with the calculated current patterns.
bits as the magnetic field increases and the state becomes
more localized and condensed. The state shown in Fig.

IV. SOFT BOUNDARIES

Actual quantum dots or wires would not have abrupt
hard-wall boundaries. The confining potential would be
the result of the self-consistent solution of the Poisson
equation for the band bending inside the semiconductor.

V(r)

FIG. II. Probability current for the na. -0, m - -4 eigen- a R
state of a circular quantum dot. The mapnetic field corresponds r

to P= 19.0 (B =5 T for a dot with 500-A radius). Classical or-
bits calculating using Eqs. (37) and (38) are superimposed on the FIG. 13. Radial potential profile of quantum dot with para-
numerical solution. bolic walls.
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Analysis of the device performance of quantum interference transistors
utilizing ultrasmall semiconductor T structures

S. Subramaniam. S. Bandyopadhyay, and W. Porod
Department of Electrical and Computer Engineering, University of Notre Dame, Notre Dame.
Indiana 46556

(Received 13 March 1990: accepted for publication 17 July 1990)

We present a theoretical study of a recently proposed class of quantum interferer:.e transistors
that utilize quantum interference effects in ultrasmall semiconductor T structures. Jur
analysis reveals that the attractive features of these transistors are the very low power-delay
product and multifunctionality; whereas the major drawbacks are extreme sensitivity of the
device characteristics to slight structural variations, low gain, and low extrinsic switching
speed in digital circuits caused by a large resistance-capacitance (RC) time constant arising
from an inherently low current-carrying capability. The low switching speed of the transistors
can however be improved dramatically by switching the device optically rather than
electronically, using virtual charge polarization caused by optical excitation. This mode of
switching (which is possible because of the small value of the threshold voltage) eliminates the
RC time constant limitation on tht switching time and results in an ultrafast optoelectronic

switch.

I. INTRODUCTION junction which modulates the transmission between the oth-

Recent advances in nanolithography have made it possi- er two ports, namely, the source and the drain. It has been

ble to fabricate "mesoscopic" structures with dimensions shown in Refs. 3 and 4 that modulating the potential at the

smaller than the phase-coherence length of electrons at cryo- gate indeed modulates the transmission (and hence the cur-

genic temperatures.' In such structures, electron transport is rent) from the source to the drain which realizes the transis-

identical to microwave propagation through a waveguide so tor action. Recently, the quantum interference effect under-

that these structures behave more like microwave or optical lying the operation of this transistor has also been

networks than ordinary circuit elements obeying Kirchoff's demonstrated experimentally in a modulation-doped GaAs-

laws.2 Recently, this feature of electron transport has found AIGaAs heterostructure.5

widespread applications in novel electronic devices that In this paper, we have examined the device performance

mimic the operation of well-known optical or microwave de- of this transistor using a scattering matrix approach. Our

vices. One example of such a device is the recently proposed analysis assumes truly ballistic transport within the struc-
"quantum interference transistor" or "quantum reflection ture, with ao scattering whatsoever--elastic or inelastic. Ab-

transistor" 4 which mimics the operation of a stub-tuned sence of inelastic scattering is required to preserve an elec-

microwave T network. tron's phase memory so that the interference effects are not
The archetypal quantum interference transistor consists destroyed. Absence of elastic scattering is also required in

of a T-shaped semiconductor structure, with three termi- one-dimensional structures for two reasons. Firstly, the lo-

nals, in which the current between two terminals is varied by calization length in Id structures is the ekstic mean-free-

a voltage at the third terminal. Figure 1 shows a schematic path" so that any elastic scattering signals the onset of strong

representation of the structure. It can be delineated lithogra- localization which renders the device inoperable. Secondly,

phically by patterning a T-sha'-ed mesa (on a modulation- even if strong localization does not set in, the presence of

doped heterostructure or a quantum well) with longitudinal elastic scatterers will cause the conductance of the structure

dimensions (i.e., dimensions along current flow) smaller to exhibit sample-specific fluctuations with an rms value of

than the phase-coherence length of electrons, and transverse -e2 /h-the so-called universal conductance fluctuations.'

dimensions smaller than the Fermi DeBroglie wavelength of Since the maximum conductance of a one-dimensional

electrons. At low enough temperatures, only the lowest sub- structure is 2e2/h, universal conductance fluctuations will

band is occupied everywhere in the structure so that each render the signal-to-noise ratio of a one-dimensional device

limb behaves as a true quantum wire or a "single-moded too poor for practical applications." Ballistic transport is

electron waveguide." Its operation as a transistor is elucidat- therefore almost mandatory for the operation of one-dimen-

ed below. sional devices. It may be pointed out that this may not be too

The T-shaped waveguide has three ports which we term difficult to attain at cryogenic temperatures in one-dimen-

(in conventional device parlance) the source (S), the drain sional structures since elastic mean-free paths can become

(D), and the gate (G). A negative dc potential applied at the very long due to the one-dimensional confinement.9

gate port will deplete a portion of the semiconductor under
the gate-termiaal thereby effectively controlling the con- II. ANALYSIS
ducting length of the gate arm. This is equivalent to inserting The T structures that we have chosen to analyze are
or withdrawing a "stub" (stub tuning) in a microwave 1" depicted schematically in Figs. 2(a) and 2(b). They are un-
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I s. S+ the gate termination as in Fig. 2(a), but instead is applied to

a gate strip which creates a potential barrier of variable
Soum height underneath the strip. This particular structure does

not operate as a conventional stub tuner. Instead, modulat-
ing the height of the barrier underneath the gate strip by a
negative gate voltage modulates the electron's wave vector in
that region and hence the phase-shift in traveling under theI gate strip which controls the interference effect.3 This latter
structure is a modification of the original stub tuning version

D- - .. of Fig. 2(a) and could provide a much lower threshold vol-
S- rai Gate tage for turn-on and turn-off which translItes into a signifi-

cant advantage in terms of switching speed and power-delay
product as we shall see later. We believe that the structures
in Figs. 2 (a) and 2(b) are optimal for the quantum interfer-
ence transistor because of the following reason. It was point-

FIG. 1. Schematic representation of a T-structure transistor showing the ed out in Ref. 3 that the modulation of the source-to-drain
incident and reflected waves at the three terminals. The figure also shows
the two primary Feynman paths (dashed lines) whose interference results current is primarily due to the interference of two Feynman
in the modulation of the source-to-drain current. paths-one going directly from the source to the drain and

the other going via the gate. These two paths are shown in
conventional transistor structures; the source is interposed Fig. 1. It is advantageous to make the magnitudes of the
between the gate and drain rather than having the gate in- transmission coefficients of these two paths as equal as possi-
between the source and drain as is conventional. Moreover, ble (over a wide range of electron wave vector) in order to
the source is much closer to the gate than to the drain for obtain the best interference effect." This can only be
reasons that will be clarified later. In Fig. 2(b). the gate achieved by making the two paths as identical as possible.
voltage which modulates the drain current is not applied to Note that in both Figs. 2(a) and 2(b), the two Feynman

paths have almost the same path length (which was achieved
by placing the source much closer to the gate than to the

vso drain) and both paths have to bend around "corners" so that
the transmission probabilities of these two paths will be ap-
proximately equal over a wide range of wave vectors." i This
ensures the strongest possible interference effect.

=VG To analyze the structures, we start with the scatteringmatrix for a three-port network. We assume that the trans-

mission probabilities of !t e two Feynman paths discussed in
_ __ Ithe previous paragraph are equal. This is equivalent to as-

E,( x) suming that the source-to-urain transmission is equal to the
Jsource-to-gate transmission, if the gate is perfectly reflect-

(a) ing. If this assumption holds, then without any loss of gener-
ality we can represent the scattering matrix of the structure
by the so-called Shapiro matrix.i2 The Shapiro matrix re-
lates the incident and reflected electron wave amplitudes at

VIS the source, gate and drain ports according to (see Fig. 1).

= ( a b *\Di (1)

-' "Vill'( vi b a /
W- where the asterisk denotes complex conjugate.

The requirements of current conservation and time-re-
I iversal symmetry mandate that the Shapiro matrix be uni-

Stary. This gives rise to the following relations between the
!, 'elements of the matrix

b - a = e", 
(2)FIG. 2. (a) A single gate /'-structure transistor adapted from Fig. 1. The

depltion width under the gate terminal (and hence the phase-shift of an
electron in traversing the gate arm) is vaned by the gate potential. (b) A v-- -sin-[sin a
double-gate T-structure transistor. The purpose of gate I (maintained at a

fixed potential) is to reflect an electron arving at gate 1. The purpose of (7 I -_ 1 210 _IEIztan a
gate 2 is to create a localized potential barer of variable height along the X
path of an electron in the gate ar n. The figures also show the conduction 2
hand-edge profiles seen by an elcztron that probes the gate arm. (3)
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1 El -l -- 2 -Eta4 = 2e dEI (EV)2[f(E) -(4) S hf1

where a is the phase of the element a in the Shapiro matrix (13)
and obeys the inequality where f is the Fermi-Dirac factor. The Fermi energy EF is

obtained by assuming that the Fermi wave vector kF is relat-
-- 21E - -tat aO. 5) ed to the volume carrier concentration N, as k, = rrn,/2

We have derived Eqs. (3)-(5) in the Appendix using only = IrNA/2, where nj is the carrier concentration per unit
the unitarity of the Shapiro matmx. length and A, is the cross-sectional areas of the quantum

If the wave amplitudes G - andG - at the gate port are wires constituting the Tstructure. In all our simulations, the
related according to area A, is assumed to be 100 A X 100.

G RG -. 6) At low enough temperatures and for small source-to-
drain biases, Eq. (13) reduces to the familiar single-channelwhere R is the reflection at the gate, then the transmission t 2-probe Landauer formula

from the source to the drain (which determines the source-
to-drain current) is given by', (2e 2 )It(EV6 )j 2

: +b[R/(l-Ra)]Ie. (7) 8 Ee- cos2[(8+v)/21 (14)

I Using Eq. (2) to relateb to a. we obtain h 1 -21alcos(O+a) + (aJ2

where Gso is the source-to-drain conductance in the linear
t=ie [(I + Re')/(1 - Ra)]. (8) response regime. In deriving the last equality, we have used
We assume that the reflection coefficient R has a magni- Eq. (12) to substitute for the transmission t.

iude of unity. This will be true if the gate impedance is infi- Equation (14) shows explicitly that G-3 is an oscilla-
nitely high. The gate impedance will be infinitely large if the tory function of 0. By varying 0 with a gate voltage we can
depletion layer underneath the gate in Fig. 2(a) or the gate make the conductance oscillate as the gate voltage is
termination in Fig. 2 (b) I is wide enough that tunneling scanned. This realizes the transistor action. Figure 3 shows
through the layer is negligible. The variable phase of the G50 as a function of 0; the device is "on" when 0 is an even
reflection coefficient R is denoted by 9 which is controllable multiple of r and it is "off" when 0 is an odd multiple of ir.
by the gate potential. For the structure in Fig. 2(a), 0 is
given by' Ill. SENSITIVITY OF THE DEVICE CHARACTERISTICS

0 = 2k I Ld (0) - L, ( V_;G) TO SLIGHT STRUCTURAL VARIATIONS-
IMPLICATIONS FOR INTEGRATED CIRCUITS

= 2(,V'2m*E/1h) [ Ld(O) - L ( Vr) ],(9) APPLICATION

where Ld (VG) :s the gate-voltage-dependent depletion In this section, we examine the dependence of the

width under the gate. For a Schottky gate, it is given by" source-to-drain conductance G,, on various elements of the
Shapiro matrix that characterize the structure. From Eqs.

L,(V;) = \2K( V,, + V6 )/eN., (10) (14). (3), and (4), we find that GstD, at any value of 0,
where V., is the Schottky barr,-r height at the gate, N, is the depends on two basic parameters: e and a. Note that c is

carrier concentration, K is the dielectric constant and V, is indicative of the transmission probability from the source to
the gate potential either the gate or the drain. Its maximum value of 0.5 corre-

For the structure in Fig. 2(b), sponds to perfect transmission from the source to the drain
and to the gate (i.e., a perfectly "transparent" source) and

o=2[k(o) - k(V )JLG

I2 =2_ E) _2m*(E-V) )L (11) '+
where Lr is the width t .ne gate strip and k( V,) is the gate ,.1,
voltage dependent electron wave vector under the gate strip.

Substituting R = e"' in Eq. (8), we finally obtain an

expression for the total transmission t through the structure 0

t = v[(I +e " )/( -a I e' t ")]. (12)
Note that the transmission t is a function of the electron
energy Eas well as the gate voltage Vr, since 9 is a function of 210 5.W 7.50 10.00 I2u

both these quantities. Gate voltage-dependent phase shift, 0 (red)
From the transmission t, we can calculate the source-to-

drain current 18D as a function of the gate voltage VG for FIG. 3. The linmrresponaesource-to-drainconductance GI as a function
various source-to-drain voltages Y,,. We use the Tsu-Esaxi of the gate voluqe-dependent phase-shift 9. This curve was obtained front
formula" which gives Eq. (14). The parameter e was 0.5 and a was a.
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its minimum value of 0 corresponds to no transmission from order to achieve the largest current carrying capability," it
the source (i.e.. a perfectly "opaque" source). The param- appears that a perfectly transmitting source does not opti-
eter a, on the other hand, is the phase of the internal reflec- mize the device performance. Instead, some amount of re-
tion within the gate or the drain arm. flection at the source is desirable.

Both E and a depend on the electron's wave vector or A much more important feature to glean from Fig. 4 is
energy (which, in turn, depend primarily on the doping) as the extreme sensitivity of Gs, to the structural parameter a.
well as the precise dimensions and geometry of the structure. The on-conductance GSD varies by almost 100% when a
In other words, they are structural parameters characteriz- varies over a range of ir/2. This can have a catastrophic ef-
ing the given structure. They can be calculated exactly by fect in integrated circuits. The parameter a, which depends
solving coupled Schr6dinger-Poisson equations and calcu- on the precise dimensions of the Tstructure and the electron
lations of this type have been performed in Ref. 3, 4. and 15. wave vector, can vary significantly across a wafer. Conse-
In this paper, instead of calculating these parameters exact- quently, different devices on a wafer will exhibit widely dif-
ly, we demonstrate instead how sensitive the device charac- ferent behavior. For a typical carrier concentration of
teristics are to these parameters. This has implications for I X 106/cm, the Fermi wavevector is 1.57 X 10/cm, so that a
integrated circuits applications, variation of just - 50 ,A in the dimensions of the structure

In Fig. 4, we show the amplitude of the source-to-drain alone can cause a to vary by ± ir/2. This then causes the on-
conductance oscillation (which is the maximum "on-con- conductance Gso (and hence the output current for individ-ductance" of the device) as a function of a and e. A curious ual devices) to vary by almost 100% which renders integrat-feature that emerges from Fig. 4 is that, contrary to intuitive ed circuit implementation impossible. Suffice it to say then
reasoning, the maximum amplitude of the conductance that the quantum interference transistor would be difficult
modulation (or the maximum on-conductance) is not ob- to implement in integrated circuits where a - 50-4 variation
tained with a perfectly transparent source (i.e., when in feature size from device to device is expected, even when
e = 0.5). Instead, it is obtained when c = 0.445. This is more the entire wafer is patterned by sophisticated techniques
evident from the inset of Fig. 4 which shows G,, (max) as a such as electron-beam or x-ray lithography. 7

function of e for a = ir. Since it is always desirable to have The extreme sensitivity of device characteristics to
the "on-conductance" of the structure as large as possible in structural parameters is a serious drawback for some quan-

tum devices and may at present preclude their application in
integrated circuits.'" It is probably true that quantum de-

" 2 vices are not ideally suited for applications in integrated cir-
1 5 cuits given the present state of fabrication technology; how-ever, "integrated circuits" do not constitute the only

1 application of electronic devices. Some quantum devices are
os capable of performing exceedingly well as discrete elements

0 / for specific applications. In these applications, their perfor-I0 6 0mance can sometimes supercede the performance of more
traditional classical devices. In the next sections, we examine
the performance of a quantum interference transistor as a
discrete circuit element by first studying its device character-
istics and then identifying some promising applications.

IV. DEVICE CHARACTERISTICS OF THE TRANSISTOR
In this section, we examine the device characteristics of

a quantum interference transistor. Figures 5(a) and 5(b)
o show the transfer characteristics (drain current versus gate

voltage) for the structures in Figs. 2(a) and 2(b), respec-
tively. The ambient temperature is assumed to be 4.2 K and

the material is GaAs. These curves were obtained directly
0 from Eq. (13). We assumed the drain bias V,, to be 10 mV.

0.5 At this bias, a ballistic electron arriving at the drain has anexcess kinetic energy of 10 meV, which, although well below
o the threshold for polar optical phonon emission, will still

2 raise the electron temperature to - 115 K. At this tempera-ture, significant electron-electron scattering (which is the
FIG. 4. The maximum source-to-drain conductance Gs0 (max) (or the dominant phase-randomizing ine'astic process in these
"on" conductance of the transistor as a function of e. the transmission prob- structures) can occur. The mean time between electron-elec-
ability from the source to either the gate or the drain, and a. the phase of the tron collisions in one-dimensional structures depends in-internal reflection within the gate or the drain arm. The inset shows
Gi, (max) asa function ofefora - Yr. The plateau region in this plot corre- versely on the square-root of temperature.'9 Electron-elec-
sponda to those values ofa and r that are forbidden by the condition in Eq. tron scattering times of -I ps have been measured in
(5). This plot is symmetnc about the a = r/2 plane. relatively heavily doped GaAs structures at 4.2 K.") We
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FIG. S. The transfer charactenstics (drain current vs. gate voltage) for (a) the structure in Fig. 2(a), and (b) the structure in Fig. 2(b). The characteristics
in Fig. 2(a) are plotted for three different carer concentrations. The ambient temperature as assumed to be 4.2 Kand the source-to-drain voltage is 10 mV.
For these plots, the parameter ewas assumed to be 0.5 and the phase a = ir.I
therefore expect the scattering time at a temperature of 115 5 (b), this is actually true of Fig. 5 (b) as well. This can be
K to be - 10- "3 s. For a carrier concentration of 10'cm -', understood as follows.
the Fermi velocity is - 10" cm/s, which gives an electron- The current modulation in this structure is due to quan-
electron scattering mean free path of - 1000 A at a drain tum interference and therefore depends critically on how
bias of 10 mV. This feature size is at the limit of present day tightly the phase-shift 0 can be controlled. The phase-shift 0
lithographic capability, so that realistically, 10 mV is about depends on the electron's energy. At nonzero temperatures,
the largest drain bias that can be applied in these structures. the thermal spread in the electron's energy introduces a

Returning to Fig. 5 (a), we find two salient features. spread A8 in the phase-shift. If AO is large, the interference
Firstly, the gate voltage required to induce one cycle of the effect is washed out by thermal ensemble averaging. The
oscillation decreases with increasing carrier concentration smaller the value of A0 at a given temperature, the stronger
N. This is easily understood from Eqs. (9) and (10). To is the interference effect and the larger is the conductance
induce one cycle of the oscillation, the phase-shift 0 has to be modulation or the transconductance.
changed by 21r. We find from Eqs. (9) and (10) that the From Eq. (9), we find that for the structure in Fig. 2 (a)
quantity 80/6 V, increases as - _N, since the wave vector
k increases linearly with N, while Ld(VG) decreases as A0 = 2Ak [ Ld (0) - L ( VG)

-N Consequently, a smaller gate voltage is required =2n*AE [L,(0) - Ld(VG)
to induce a change in 9 by 21r if N, is larger. The second and -2 kF

perhaps the more important feature in Fig. 5(a) is that the
peak-to-valley ratio of the drain current increases with in- -2 2m*kT [L(0) -Ld(VG), ()
creasing carrier concentration. Although not shown in Fig. mfnn
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where AE is the thermal spread in energy tzk T) and n, is 070

the electron concentration per unit length.
For the structure in Fig. 2(b) V[ v

~2rnkT~ \EFeVC0.47,wm47T I . "

2e E , E n e r c o 60

2 m * k T 0 .2 - / 1L . ( 6

h. 2n / - " - ----------- . ....

From Eqs. (15) and 16l), we can see that for both struc- T --- '-.. --------------- " 1..... m_
lures, AO decreases with increasing carrier concentration o 00 2.00 4 00 6.00 8.00 o00

n1.2' A larger carrier concentration therefore gives rise to a Drain Voltage (mY)

smaller A0 at a given temperature and provides a larger cur-

rent modulation or a larger peak-to-valley ratio of the drain 0.70

current. This, combined with the fact that the gate voltage
required to induce one cycle of the oscillation also decreases z
with increasing carrier concentration, means that the trans- 047 1 

- -

conductance g. ( = dlo/dV) increases with increasing (

carrier concentration. It appears from Fig. 5 that an operat-
ing temperature of 4.2 K, we require a volume carrier con- 2

.I 0.23centration of l0" cm ' (which corresponds to a linear car- '-
rier concentration of 107 cm ' assuming the cross-sectional C
area of the structure to be 100AX 100 A) in order to obtain a 27?--=2omv
sufficiently large transconductance. However, even at this 0.0 00 200 00 6.00 800 ,.00

large carrier concentration and low temperature, the actual Drain Voltage (mV)
value of the transconductance is rather small; it is only about
10-- Siemens. This obviously has a deleterious effect on FIG. 6. The drain current vs drain voltage characteristics for various gate
device performance and lowers both the small-signal gain voltages ploted for (a) thestructurein Fig. 2(a).and (b) thestructurein
and the bandwidth significantly. We will examine the cause Fig. 2(b). Theambient temperature is4.2 Kand the carnerconcentration is
for the small value of the transconductance later. 10" cm . For these plots, the parameter c was assumed to be 0.5 and the

In Figs. 6(a) and 6(b), we plot the drain characteristics phase a =r.

(drain current versus drain voltage) for the structures in
Figs. 2(a) and 2(b) for various gate voltages. The most im-
portant feature to note here is that the drain characteristics V. ANALOG APPLICATIONS
do not saturate up to the maximum allowed drain voltage of Even though the T-structure transistor is not suitable
10 mV. This has very serious implications for device applica- for application as an analog amplifier, there are other appli-
tion. Because of this feature, it may be argued that it is not cations for which it may be ideal. One obvious application is
even meaningful to specify a transconductance for this de- in frequency multiplication. Since the gate voltage swing re-
vice, since the transconductance is not constant over any quired to make the drain current go through one cycle of
appreciable range of the drain voltage or output voltage oscillation is rather small, this transistor can be used as a
swing. More importantly, it also implies that this transistor single-stage frequency multiplier in the following way. If we
is not suitable for conventional applications requiring signal apply a sinusoidal voltage of peak-to-zero amplitude V and
amplification, since it is not possible to provide a constant frequency! at the gate, and the gate voltage swing required
amplification over any range of the input signal. This is a for one cycle of drain current oscillation is Vp, then the fre-
pathological problem with quantum devices that are con- quency of thedrain current oscillation will be ( V/VP)f This
strained to operate in the linear response regime in order to can be understood by referring to Fig. 7 where one cycle of
avoid carrier heating. For signal amplification, a device must the gate voltage swing results in three cycles of the drain
operate in the nonlinear response regime in the sense that the current oscillation. The frequency multiplication factor N is
drain current must saturate. This can be achieved by lower- simply given by
ing the carrier concentration in this structure (the drain(17)
characteristics do tend to saturate if the carrier concentra- N = V/V,.
tion is less than 10'" cm ), but this also lowers the trans- For a carrier concentration of 10"' cm- , V, =300 mV for
conductance drastically. This means that even if the drain the structure of Fig. 2(a) and 540 mV for the structure of
current can be made to saturate so that the differential drain Fig. 2 (b) if the gate width is 100 A. Hence for a gate voltage
resistance rd ( = d Vso /dlso ) is large, the transconductance amplitude of 10 V, the frequency multiplication factor is
g,,, would still be very small so that the overall small-signal - 20-30. Note that V, scales inversely as the gate width for
voltage gain a, ( = g,,,r ) will not be sufficiently large for the structure in Fig. 2(b), so that we can decrease V, and
signal amplification. In summary, this transistor is not suit- hence increase the frequency multiplication factor by mak-
able for applications requiring signal amplification. ing the gate width larger. However, this will make the entire
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structure larger which will then necessitate decreasing the low limit on the maximum drain voltage of - 10 mV. In
source-to-drain voltage in order to increase the electron addition to decreasing the bandwidth of the transistor, the
mean-free-path. low current carrying capability also lowers the transconduc-

Of course. there is a maximum limit on the frequency of tance g,, and hence the transistor gain.
the input signal that can be applied at the gate. The gate Although the bandwidth of this transistor is not specta-
charges up in a time determined by the RC time constant cularly high, what is impressive about the device is the multi-
associated with the charging of the gate capacitor so that the junctionality implicit in its use as a single-stage frequency
maximum input frequency is multiplier. Conventional frequency multipliers require more

I,,,, I/(21rRC), (18) than one active element, whereas this transistor provides fre-
quency multiplication in a single stage thereby replacing an

The RC time constant should be interpreted as the time entire circuit by a single element. This multi-functionality,
required to charge the gate capacitor to a voltage V with a which is exhibited by many quantum devices, -' is a very
current 1, i.e., important attribute and has serious implications for the ulti-

1J .RC mate viability of these devices. Since quantum devices are
S=(19) not ideally suited for use in integrated circuits or circuits

with many active elements, one can exploit this kind of
If we assume the current I to be time-independent, then multi-functionality to realize the function of a multi-element

RC = C, V/I (20) circuit without using more than one element. It is this multi-

with C, being the gate capacitance given by functionality that appears to be the most attractive feature of
quantum devices at present.CI =A EKN<.I2V,, . (21)

The current I in Eqs. (19) and (20) is the gate current. For Vi. DIGITAL APPLICATIONS
calculating the unity gain bandwidth, we set it equal to the We now examine the performance of the T-structure
drain current so that maximum value of I is transistor for discrete logic applications. The non-saturating

I= (2e2/h) Vo (max). (22) behavior of the drain characteristics poses a problem here as
well since signal restoration at logic nodes, sufficient noise

Combining Eqs. (18), (20), (21 ),and (22), we obtain margin and sharp transitions between logic levels all require

e2  2 V, V (max) saturating (nonlinear) devices with preferably high trans-
1 .l. ' = ex (23) conductance. However, for very low-power logic and under

rather low-noise operating conditions (low temperature), it
Finally, from Eqs. ( 17) and (23), we find that the maxi- may be possible to use the T-structure transistor as a discrete

mum output frequency of the device (for unity current gain) logic switch for digital applications. There are three basic
is requirements that such a switch has to satisfy: ( 1 ) The ratio

fr =fl,. = NfM,,. = (V/V )fli,,. (24) of the "on" to "off" conductance must be sufficiently large

Using Eqs. (9), (10), and (11) to substitute for V, in the so that there are well-defined logic levels. (2) The switching

above equation. we find that for the structure in Fig. 2 (b),fr
is given by

ff = 31 2V,A V.(max), (25)

''h'A(n,)3 1 2  eK

whereas for the structure in Fig. 2(a), fr is given by

fr=fj, = e A, V( IT /(max), (26)
2trh A e

where A, is the cross-sectional area of the Tstructure. Gate Vl
Assuming LG = 100 A, A = 100 AX 100 A, A, = 100

Ax 100A. V, =0.6V, n, = 107cm and Vn(max) = 10
mV, we obtain a value off,,., = 100 GHz for the structure in
Fig. 2(b) and -400 GHz for the structure in Fig. 2(a).
These figures are certainly impressive, but not significantly
larger than the largest bandwidths that have been obtained
with more conventional devices such as InAIAs-InGaAs
HBTs. 2 pseudomorphic InGaAs HEMTs.2" GaAs MES-
FETs,2" GaAs Gunn oscillators-5 and resonant tunneling Gate VoI8 Sm g

diodes.2 " What limits the maximum frequency of the T-
structure transistor ultimately is the low current carrying
capability. This can be seen directly from Eq. (26). The low FIG. 7. Figure elucidating the application of a T.structure transiator as a

iapabilte sen drc y tm r The low single-stage frequency multiplier. A single swing of the gate voltage causes
current carrying capability is caused by the rather low con- ihe drain current to swing over 3 cycles resulting in a multiplication of the
ductance of 2e 2/h ( = 7.8 X 10- S) along with the rather input frequency by a factor of 3.
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speed must be high. (3) The power-delay product must be scheme of switching c~.n provide an ultrafast optoelectronic
low. switch.

From Fig. 5 we find that in order to satisfy the first Before concluding this section, we briefly examine the
requirement. the carner concentration must be at least 10'9  power-delay product of the T-structure transistor. The pow-
cm j. We have therefore used this value of the carrier con- er-delay product is estimated as
centation to calculate the switching speed and power-delay For C 2 F 2 t (29)
product. D=C,1 (9

In calculating the switching speed. we first recognize For the structure of Fig. 2 (b), this gives an intrinsic value of
that there are three time constants involved in switching. S X 10 -" J. Even if we include the effects of interconnects
The gate charges up to the threshold voltage in a time deter- and raise the value of the gate capacitance to I fF, we still
mined by the RC time constant, the barrier in the device obtain a value of 5 X 10- " J which is undoubtedly impres-
responds to the gate potential in the dielectric response time sive and is comparable to that of Josephson junctions. This
and thedrain (output) current respondson timescales of the extremely low power-delay product accrues primarily from
order of the transit time through the device. Of these three the small value of the threshold voltage. We therefore con-
time constants, the dielectric response time is much smaller clude that the T-structure transistor, despite its low switch-
than the other two, so that the switching time is determined ing speed, can still exhibit a power-delay product lower than
primarily by the other two time constants. that of most electronic devices that currently exist.

The transit time through the structure is essentially the
time required to traverse the longer of the two Feynman ViI. OPTOELECTRONIC APPLICATIONS
paths in Fig. 1. Assuming this path length L to be - 1000 A,
we obtain In this section, we examine the viability of switching theT-structure transistor optically, rather than electronically,'rani . L/v, z0. 1 ps, (27) in order to eliminate the RC time constant limitation on

where we assumed the Fermi velocity v,- to be - 10' cm switching and realize an ultrafast optoelectronic switch. Re-
which is the limit set by Bragg reflection in GaAs. cently, it was pointed out that an optical radiation field, with

The RC time constant is obtained as in the previous a frequency lower than the band-gap frequency, can induce
section virtual charge polarization due to virtual transitions

between electron and hole states in a quantum confined
rRC /( structure."° The field associated with this charge polariza-

It is important to note that the RC time constant depends on tion may be sufficiently large to generate the small voltage
the threshold voltage V,. The lower the value of V,, the lower required for switching a T-structure transistor. It is impor-
is the value of the RC time constant. The low values of tant to note that this voltage is not generated electronically,threshold voltages in quantum devices partially offset the so that there is no RC time constant limitation on the switch-
low values of the current I that can be sustained in these ing.3' Instead, the voltage is generated on time scales deter-
devices to yield a small enough RC time constant. From mined by the pulse width of the optical pulse and inherent
Figs. 5(a) and 5(b) we find that the drain current can be time response of the virtual charge polarization mechanism
changed by more than 90% if the gate voltage is changed by which is expected to be - 100 fs.3"This time scale is compar-

100 mV. Hence the threshold voltage V, = 100 mV. Using able to or smaller than the transit time through the Tstruc-
this value of V, along with the values of I and C, from the ture, so that the overall switching speed will be of the order
previous section, we obtain aRC time constant 1'RC of -0. 15 of the transit time which can be made small enough ( -1 ps)
ps. The overall intrinsic switching delay of the transistor is by making the structure short.Using this scheme, one can
therefore -0.1 ps. This is faster thah the switching speeds of therefore realize an ultrafast optoelectronic switch.
the fastest electronic devices that currently exist.2' We now examine any modifications that would be nec-

The small value of the switching delay accrues primarily essary to convert the T-structure transistor into an optoelec-
from the small threshold voltage and the small gate capaci- tronic switch. It was calculated in Ref. 30 that for a reasona-tance. The gate capacitance was calculated from Eq. (21 ) to ble laser pump power density of i 0" W cm -', the screeningbe - 10- " F. While such small discrete capacitors have field generated by virtual charge polarization is -0.5

been realized in Coulomb blockade experiments,.9 it is un- kV/cm for an optical detuning energy of 50 meV, when the
likely that when interconnects are attached to the device, the structure is biased with a dc field of 10' V/cm along the
overall gate capacitance (including that due to the intercon- direction in which the screening field is created. Since a laser
nects) will be that small. A more realistic estimate for the spot can be focused to an area of I ml, the required pump
overall capacitance (including the effect of interconnects) is power can be provided by a I -W laser. For a T-structure with

10 - " F. We therefore estimate that while the intrinsic a vertical dimension of 200 A, the required dc bias of 10'
switching delay is smaller than I ps, the extrinsic switching V/cm can be obtained by applying a constant voltage of 200
delay may actually exceed 100 ps. What limits the extrinsic mV across the vertical dimension. With this arrangement,
switching speed in thiscase is theextrinsic RC time constant the voltage generated by the screening field will be 0.5
of the gate interconnects. In the next section, we propose a kV/cm x 200 A = I mV. If the threshold voltage for switch-
way to overcome this limitation by switching the device opti- ing can be lowered to this value, it will be possible to switch
cally rather than electronically, thereby eliminating the RC the transistor optically and realize an ultrafast optoelec-
time constant limitation associated with gate charging. This tronic switch.
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To attain a threshold voltage of I mV while maintaining ACKNOWLEDGMENTS
a carrier concentration of 10'" cm 3, we need to increase the The authors are indebted to Professor Supriyo Datta
width ofthe gatestrip in the structure ofFig. 2(b)to and Professor M. Yamanishi for many insightful discus-
A [ see Eq. ( I )]. This will of course also necessitate increas- sions. This work was supported by the Air Force Office ofing the source-to-drain separation, to about 1 Jm, which in Scientific Research under Grant No. AFOSR 88-0096 and
turn would necessitate reducing the drain voltage to about I by IBM.
mV in order to increase the mean-free-path for electron-elec-
tron scattering. This low value of the source-to-drain voltage
does not present any special problems for switching applica- APPENDIX
tions since even with this small drain voltage, the drain cur-
rent can swing over a range of - (e2/h) VID = 40 nA which In this appendix, we derive the relationships between
can be detected by sensing amplifiers, the various elements of the Shapiro matrix using only the

We therefore conclude that it is possible to use a T-struc- unitarity of the matrix. The Shapiro matrix is given by
ture transistor to realize an ultrafast optoelectronic switch. *(a + b) v'=iF-
A prototypical structure for such a device will consist of the
configuration shown in Fig. 2(b) with the entire top surface e a b
covered with an optically opaque material leaving a trans- V/ b
port slit of width -4000 A. in the place of the gate strip. From orthogonality of the various columns,
Since the vertical dimension of the structure is only about
200 A. we can neglect the effect of diffraction through the slit lel+ab+ba*=. (Al)
and assume that incident radiation absorbed through the slit Using the relation
will create a localized potential barrier underneath the slit b = a + e", (A2)
which can switch the transistor from an "on" to an "off"
state or vice versa. The effective switching speed will be of we obtain from Eq. (A )
theorderofthetransit timethroughthestructure, which, for IEl + a(a + e") + a* (a + e") = 0. (A3)
a l-/um-long structure is - I ps. This is an attractively high Let a = Iale". This reduces the above equation to

* switching speed. r lel + Jai2( 1 + e a ) + lale"2 cos a = 0, (A4)
or

Vill. CONCLUSION lel + lai'[ I + cos(2a) + i sin(2a)j
+VII2Ios. CONCLUSIONv =0. A5

In this paper, we examined the device performance of al2cosa(cosv+isinv) =0. (AS)

quantum interference transistors utilizing ultrasmall semi- Equating real and imaginary parts to zero, we obtain

conductor T structures. Our analysis revealed both the lalsin a cos a + sin v cos a = 0,
shortcomings and the attractive features of these transistors. lel + 21alcos2 a + 2lalcos a cos v = 0. (A6)
On the negative side. the major hurdle appears to be the lack
of control over device characteristics (or their irreproducibi- Assuming a # /2 , the first of the above two equations gives
I;ty) whichaccrues from the extreme sensitivity of thedevie(A7)
characteristics to small structural variations. At presem, and the second gives
this may preclude the use of these devices in integrated cir- lel + 21al2 cos' a + 21alcos a, 1 - lal sin- a = 0. (A8)
cuits. However. this is a technological problem and newly
emerging technologies such as scanning tunneling micros- Transposing and squaring Eq. (A8), we get
copy tools for lithography may make it possible in the future JEl + 41a1I cos4 a + 41el Jai2 cos' a
to exercise tighter control over device dimensions which will = 41al2 cos' a( 1 - jai' sin2 a), (A9)
mitigate this problem to a large extent.

On the positive side, quantum devices exhibit multi- or
functionality and in some instances are capable of periorm- lal' + lal'( IE' - 1) + e12 /4 cos 2 a = 0. (A10)
ing the functions of an entire circuit within a single element. The solution of the last equation is
This is a major advantage-both in terms of circuit size and
speed-and needs to be investigated further. The power-de- Ia12-- - le! ±/1 + lel - 21l - Jel - seca (All)
lay product for these transistors can also be very low due to 2

the small threshold voltages. Finally, the small value of the Since jal cannot be greater than 0.5 (otherwise dhe uni-
threshold voltage opens up the intriguing possibility of tarity of the Shapiro matrix will be violated), we can admit
switching these devices optically rather than electronically only the root with the negative value of the radical. There-
thereby eliminating the RC time constant limitation on fore,
switching. In view of all these, it appears that although there -
are some serious drawbacks, thereis still enough promise in jai 2  1 -lel - 41 - 21e! - lei tan-a (A12)
quantum interference transistors to warrant serious consi- 2
deration. Combining Eqs. (A7) and (A12), we get
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QUANTUM DEVICES BASED ON PHASE COHERENT LATERAL
QUANTUM TRANSPORT'

S. Bandyopadhyay, G. H. Bernstein and W. Porod

Department of Electrical and Computer Engineering

University of Notre Dame

Notre Dame, Indiana 46556

Phase-coherent Literal transport phenomena hold the promise for many new types
of "quantum devices" with vastly improved performance over conventional de-
vices. In this paper, we address the performance of lateral quantum devices in
which current flows parallel to the interfaces of a heterostructure. In particular, we
focus on two specific devices, namely the Aharonov.Bohm interferometer and the
recently proposed Quantum Diffraction Transistor, which have ultrafast extrinsic
switching speed and a tremendous potential for multi-functionality.

1. INTRODUCTION

Over the past few years. numerous novel electronic devices have been pro-
posed or demonstrated whose operations rely entirely on quantum transport phe-
nomena. The most widely studied member of this class is the resonant tunneling
diode in which electron transport occurs perpendicular to the interfaces of a het-
arostructure and the current depends on the interference of waves multiply reflected
by heterobarriers. More recently, a different genre of devices has emerged (which
we refer to as lateral quantum devices) in which current flows parallel to het-
erointerfaces. The inherent advantage of these devices is that the current levels in
them can be much higher, which translates into a significant advantage in switch-
ing speed when the device is used in an integrated circuit. In "vertical quantum
devices", such as the resonant tunneling diode, the current levels are typically low
since the current is predominantly due to tunneling through large potential barri-
ers caused by band-edge discontinuities. In contrast, there are no large potential

'Supported by the Air Force Office of Scientific Research under grant no.
AFOSR-88-0096 and by IBM Faculty Development Awards.
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barriers in lateral quantum devices so that the current levels are generally much
higher.

In an integrated circuit chip, the switching speed of a device is determined
not so much by the intrinsic speed of the device, but rather by the time it takes to
charge and discharge the interconnect and device capacitances. This time depends
on the current that can be supplied to the capacitances and the (threshold) voltage
levels to which the capacitances must be charged. Roughly speaking, the extrinsicswitching time *, is given by

I '(1)

I where Ct is the total circuit capacitance, V is the threshold voltage and I is the
current 2 .

It is advantageous to employ such quantum devices in integrated circuit chips
that have very low threshold voltages and can carry relatively large currents so that
the extrinsic switching speed is high. Lateral quantum devices, whose operations
depend on phase-coherent lateral transport, are superior in this respect. They
not only exl'ibit larger current carrying capability, but can also have very small
threshold voltages3 . Consequently, the extrinsic switching speed of lateral quantum
devices is usually much higher than that of vertical quantum devices.

In the following Sections, we discuss the performance of two different classes
of lateral quantum devices. They are the Aharonov-Bohm interferometer and the
recently proposed Quantum Diffraction Field Effect Transistor [1].

A. The Aharonov-Bohm interferometer

In the Aharonov-Bohm interferometer, electrons in two contiguous paths are
made to interfere by an external electrostatic potential which modulates the cur-
rent. If the interferometer is two-dimensional, which means that each path is a
two-dimensional structum (viz. a quantun well), then the current can be made
arbitrarily large by increasing the transverse width of the structure. This may result
in certain advantages, but not necessarily in the extrinsic switching speed, since
increasing the width of the structure to increase current also increases the circuit
capacitance. Besides, a more crucial drawback of two-dimensional interferometers
is that they do not perform sufficiently well for device applications unless taits-
port is truly ballistic (2]. Ballistic transport is not easy to achieve in devices with

2This limitation on the switching speed does not arise if an electronic
device can be switched optically. An intriguing scheme for switching an
Aharonov-Bohm interferometer optically (based on virtual charge polariza-
tion), instead of electronically, has been proposed by M. Yamanishi. (Proc.
of the 4th. Intl. Conf. on Superlattices, Microstructures and Microdevices).I 3 An example is the Aharonov-Bohm interferometer (see Ref. 3).
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present-day capability. It therefore behooves us to consider realistic disordered
structures and examine device performance in the diffusive regime.

In diffusive transport, two-dimensional interferometers do not work well but
one-dimensional interferometers (in which the interfering paths are quantum wires)
work sufficiently well [2]. The primary reason for this is that in 2-d interferometers,
there is a two-fold ensemble averaging - over the electron's energy E and the
transverse wavevector kt - whereas in 1-d interferometers, the averaging over kt
is absent. The latter averaging has disastrous results when elastic scattering is
operative. Therefore, for real device applications, l-d interferometers appear to be
the inevitable choice, at least for the present.

In Fig. 1, we show the current modulation (due to the electrostatic Aharonov-
Bohm effect) in a disordered 1-d GaAs interferometer in the weak localization
regime at 77 K. The length of the structure is 1000 X , the carrier concentration
is 1.55 x 106 / cm and the impurity concentration is 105 / cm. The model for this
calculation is the same as that employed in Ref. 4. The voltage over the structure
is 36 meV which is the threshold for polar optical phonon emission (onset of strong
inelp:'ic scattering) in GaAs. Again, a - 70 % modulation of the conductance is
found at LN2 temperature, which may be good enough for device applications.

From Fig. 1, we find that the maximum value of the current is 2.1 gA. This
is very large for single-moded quantum devices whose typical cross-sectional area
is 100 X x 100 X.. The current level of 2.1 IiA translates into an effective current

density of more than 106 A/cm 2 which is about an order of magnitude higher
than what can be achieved in resonant tunneling diodes. In addition, the threshold
voltage for switching of such devices is also very low. The threshold voltage is
7 mV. Therefore, using Equation (1) and assuming that the total circuit capacitance
is about 1 fF4, we find that the extrinsic switching time -, is - 3 ps. (The intrinsic
switching speed of the device is the transit time of electrons which in this case is

230 fs). The 3 ps switching speed is comparable to that of the fastest GaAs
and Silicon devices or even Josephson junctions.

Apart from a fast switching speed, Aharonov-Bohm quantum devices have the
additional advantage of having high transconductance (even for nanometer feature
sizes) which is advantageous for analog applications. For our prototypical struc-
ture, the maximum absolute transconductance was 0.45 mS. This is comparable
to the highest transconductance that one could obtain with a 100 nm wide GaAs
MODFET whose transconductance would rarely exceed 1 S/mm. For such a MOD-
FET with a feature size of !000 X, the absolute transconductance will be 0.1 mS
which is slightly lower than the transconductance obtainable with Aharonov-Bohm
devices.

The most striking feature of the Aharonov-Bohm device however is its ex-

4The estimate of I fF is optimistic, but certainly realizable. Capacitances
ot 10-"7 F have been obtained in "Coulomb Blockade" experiments.
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tremely low power-delay product This quantity is approximately given by

PDP - CtVt' (2)

which gives a value of 5 x 10- 20 Joules for a device with Ct = IfF and t =
7 meV. This power delay product is a few orders of magnitude lower than what
could be obtained with even Josephson junctions.

Needless to say, the above performance figures that we have calculated are the-
oretical projections and one must wait for the realization of actual prototype devices
to see if th* predicted performance is approached. But more importantly, these
devices have another intriguing characteristic; they exhibit multi-functionality. For
instance, they can be used to realize unipolar complementary operations, single
transistor static latches and single-stage differential amplifiers [3]. It is this multi-
functionality that is the most attractive feature of quantum devices, especially in
view of its impact on alternate architectures such as neural networks or cellular
automata.

8. The Quantum Diffraction Field Effect Transistor
Another lateral quantum device that promises extraordinary muti-functionality

s the recently proposed Quantum Diffraction Field Effect Transistor (QUADFETI.
s schematic is depicted in Fig. 2.

The QUADFET is basically a MODFET where the gate has a narrow slit
efined by electron-beam exposure. Electrons incident from the source can diffractIrough the slit, and the diffraction pattern is viewed as the currents collected at
arious fingers in a "drain" consisting of closely spaced fingers. Just like in an
rdinary diffraction experiment, the diffraction pattern (and hence the currents
)llected at the fingers) can be changed by modulating the width of the slit. An

2.4

S.2 "

I
0.0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 6 12 18

Voltag ( mV)

Fig. 1. The transfer characteristic of a disordered 1-d A-B interferometer
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analog voltage applied between the gate pads constricts the slit by extending the
depletion layer surrounding the slit. This changes the slit width and alters the
diffraction pattern so that the current levels in the fingers are changed. The current
level in each finger can be made to represent a "bit" so that one can effectively
transduce an analog signal between the gate pads into a bit pattern or a digital
signal at the drain fingers. This suggests the operation of an A/D converter. The
potential multi-functionality of this device exists in the replacement of an entire
A/D circuit by a single transistor.

The problem with the QUADFET however is that it is inherently two-
dimensional and therefore requires strictly ballistic transport 5 . In that sense, this
device is somewhat futuristic, but assuming that future technology will routinely
yield ballistic structures, we can examine the performance of this device, particu-
larly to see if it can be operated at sufficiently high temperatures.

The condition for obtaining a minimum in the diffraction pattern, at any finger
in the drain of the QUADFET, is expressed as

akF . , 1
-k--siO = n + 7  (3)

where a is the slit-width. FINGERS

GATE

SOURCE

Fig. 2. Schematic of a Quantum Diffraction Field Effect Transistor

5The QUADFET requires ballistic transport for the same reason that a
2-d Aharonov-Bohm interferometer requires ballistic transport, namely the
ensemble averaging over the electron's transverse wavevector.
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In a 2-d structure, the spread in the transverse wavevector introduces a spread
in 0, and the thermal spread in energy introduces a spread in the Fermi wavevector
kF, which together tend to make a minimum shallow. For a minimum to be clearly
discernible, we require

A akFsinO) = ak1 d(sinO) + na "O f dkF < (4)(' 2r 2r 0 2) 2 y:.od(,

or akF a m*kT 1(5)

27r + 2ir h 2 kF < 2(5)

where kT is the thermal spread in the Fermi energy and m* is the effective mass
of electrons. We have replaced sinO by its maximum value of unity.

The minimum value of the left-hand-side is obtained whenIkT 27rkTm*

EF = U ; or n,= h ' , (6)

where n, is the carrier concentration. The surprising fact is that for a given carrier

concentration, there is an optimum operating temperature.
It rams out coincidentally that in GaAs, for a typical carrier concentration of

-, 101 cm- 2 , the optimum temperature is - 77 K! Of course, for 77 K operation,
it is necessary that the device dimensions be smaller than the mean-free-path at
LN 2 temperature, but this is already not too far outside the capability of x-ray or
electron-beam lithography. Also, for this temperature and carrier concentration,
Equation (4) is satisfied with a slit-width a < 200 X and this is achievable with
present lithographic capabilities. It therefore appears that the QUADFET will
become a viable device for electronic applications in the future.

In conclusion, lateral quantum devices are still in their infancy. But they are
likcly to play an increasingly important role in electronic circuits of the future.
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Several properties of the Landauer resistance of finite repeated structures are derived. A theorem
relating the energies of unity transmission through a finite repeated structure to the band structure

of an infinite superlattice formed by periodic repetition of the finite structure [Vezzetti and Cahay,
J. Phys. D 19, L53 (1986)] is generalized to the case of structures with spatially varying effective
mass. We also establish a sum rule for the Landauer resistances of periodic structures formed by
periodically repeating a basic subunit. Finally, we derive an analytical expression for the "boundary
resistance" of a structure, as introduced by Azbel and Rubinstein in connection with pseudolocali-
zation, and prove several properties of this quantity.

1. INTRODUCTION basic subunit, and in Sec. VI, we derive an exact analyti-
cal expression for the "boundary resistance" of a struc-

The Landauer formula' for calculating the resistance ture as introduced by Azbel and Rubinstein in connection
of a dissipationless mesoscopic structure has been used with pseudolocalization. Finally, in Sec. VII, we summa-
quite widely in the study of quantum transport phenome- rize our conclusions.
na. The formula relates in a simple way the resistance of
a structure (in the linear-response regime) to the probabil-
ity of transmission of an electron through the structure. II. TRANSMISSION OF AN ELECTRON
The usefulness of the formula lies in the fact that it THROUGH AN ARBITRARY POTENTIAL
reduces the problem of quantum mechanically calculat-
ing resistance-a rather difficult problem-to a much In this section, we first derive an expression for the
simpler problem of calculating just the transmission transmission coefficient of an electron through an arbi-

probability. In this paper, we prove several interesting trary one-dimensional potential of finite spatial extent.
properties of the Landauer resistance (i.e., the resistance For the sake of generality, we allow for spatial variation

in the linear-response regime) of a finite repeated struc- of the electron's effective mass but assume it varies only

ture such as a semiconductor superlattice. These proper- in one direction. The time-independent Schr6dinger

ties are all derived from the properties of the transmis- equation describing the steady-state (ballistic) motion of

sion coefficient of an electron through a periodic poten- an electron through such a potential is

tial of finite spatial extent. 2~ - 2 a 2 4, 2 ad 2b 'a I I a
In Sec. 11 of this paper, we first employ a transfer- __

matrix technique to derive a general expression for the 2m*(z) ax 2  2m *(z) ay2  2 az m (z) az
transmission probability of an electron through an arbi- +E(z)=EO, (I)
trary potential profile. We then extend this result in Sec.

III to calculate the transmission probability ITNt 2 of an where EW(z) is the one-dimensional potential that varies
electron through N subunits of a finite repeated structure. in the z direction and m *(z) is the spatially varying
Using this expression, we extend an earlier result 5 relat- effective mass. In a semiconductor heterostructure, EW(z)
ing the energies of unity transmission through a finite re- is the conduction-band edge profile which incorporates
peated structure to the energy-wave-vector relation for any band bending due to space charges, variations due to
an infinite structure formed by periodically repeating the compositional inhomogeneity, and also variations due to
basic subunit of the finite structure. In Sec. IV, we prove any external electric field.
a set of theorems that establish interesting and useful re- Because the Hamiltonian in Eq. (1) is invariant in the x
lationships between the transmission probabilities (and and y directions, the transverse wave vector k, is a good

hence the Landauer resistances) associated with the sub- quantum number. Furthermore, since the z component
units of a finite repeated structure. These theorems are of the electron's motion is decoupled from the transverse
all illustrated with numerical examples dealing with com- motion in the x-y plane, the wave function 0 can be writ-
positional and effective-mass superlattices. In Sec. V, we ten as
establish a sum rule for the Landauer resistances of k,
periodic structures formed by successively repeating a b = O(z)e' (2)

42 5100 1990 The American Physie SocietyI
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where k, = (k, ky) and p = (x,y). transfer matrices for the individual intervals:

The z component of the wave function 6b(z) now W1ot=wN1 ... Wib, (5)
satisfies the Schr'linger equation

d I I ±0 I 2me* where W ' is the transfer matrix for the nth interval as

dz y(z) dz Z2 I
- Ep+E,[ I - 7y( z ) -'] definedinEq.(4).

The overall transfer matrix W'"' relates the wave func-
- E,(z)[q(z)=O, (3) tions and their first derivatives at the left and right con-~tacts:

where m* is the effective mass of the electrons in the _____: I
"contacts" sandwiching the region of interest (m, is spa-y(1- zL Wt Iyo)d
tially invariant within the contacts and isotropic), y.L) dz (6y(0-)

y(z)=m*(z)/mc* , E,=f2k2/2mn*, and E. is the kinetic (L +) W(O-)
energy associated with the z component of the motion in In Eq. (6), 0(0-) and O(L ') are the electronic states
the contacts (E =1i#k'/2m*). inside the left and right contacts. They are given by".6 - 10

The above equation cannot be solved exactly for an ar- , ,0 z

bitrary potential E,(z). However, an approximate solu- 1e +Re 0 , z <0

tion can be found by approximating the potential profile O(Z)- Teiko(Z-L) (7)

by a series of potential steps' (see Fig. 1) or by using a

piecewise linear approximation for the potential. 7 In the where ko [=(2m*Ep,1i)1/2] is the z component of the

former scheme, the region over which the potential varies electron's wave vector in the contact and R and Tare the

is broken down into a finite number of intervals. Within overall reflection and transmission coefficients through
each interval the potential and the effective mass are as- the region (0,L]. Using these scattering states for the
sumed to be constant. In that case, the wave function and wave functions at z =0- and z =L + and noting that, by
its first derivative at the left and right edges of an interval definition, y(L * )= y(O- )= 1, we obtain from Eq. (6)
are related through a so-called "transfer matrix," charac- [ik I 1-R)
teristic of that interval, whose elements do not depend on iT o i (8)
the z coordinate and can be determined analytically. I J [ 1+R

The transfer matrix for the nth interval [zn - ,z,] is
defined according to Equation (8) finally gives us the two equations for the

two unknowns T and R. From these two equations T and

I______ I -- A, R can be found by straightforward algebra. Eliminating
y(z,) dz wly(z_) dz -n-I R gives

n~~~~' II " 12 yz._I)d

46(z,, ) =!wln, bz+ 2iko( w1n, W10, - Wtn, Wt
O" +t 11 22 12 21(9

iko( WOt't + WWI )+( "'m2 - W[t ) '
(4) 1 0 2

where W~jt are the elements of the matrix W'" that are
where W i' are the elements of the transfer matrix, and found from Eq. (5).

zn 1. and z,- stand for z, + e and z, -, respectively, Since W t is a unimodular matrix,' the term within
with e being a vanishingly small positive quantity. Expli- parentheses in the numerator of Eq. (9) is unity. In addi-
cit expressions for the elements of the transfer matrix are tion (see the Appendix), W!j°* is always purely real.
given in the Appendix. Therefore Eq. (9) gives

Assuming continuity of 6(z) and [l/y(z)]/(d0i/dz)
everywhere in the structure, the overall transfer matrix 4k' (10)

W 0 describing the entire region (0, L I (see Fig. 1) can be k ( W"01 + W .2 )' Wtk 2 - Wlt )2

found by simply cascading (multiplying) the individual

The above equation gives us a general expression for

the transmission probability of an electron through an ar-
bitrary potential. The transmission probability 1712 is, of
course, related to the reflection probability JRI 2 accord-
ing to the relation 712+1R 12 1 as required by current
conservation.

I11 TRANSMISSION OF AN ELECTRON
THROUGH A FINITE REPEATED STRUCTURE

contict cont'c Having found a general expression for I Ti, we now
proceed to evaluate the transmission probability (and

0 ZI Z2 Z3 ... Z,.4 Z, Zn ...Z N hence the Landauer resistance) associated with a finite re-

FIG. I. An arbitrary potential profile approximated by a peated structure formed by the periodic repetition of a
series of potential steps. Within each interval, the potential and structure with arbitrarily varying potential.
effective mass are ainsumed to be spatially invariant. Consider the potential profile in Fig. 2 formed by the
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E (z) R 2-P 1

2 N-1 N L 2e2 1TN 2

h [sin(N)] 1  +1
I Z e- 2  2k 0 sinO I I

).-suBNrr 1(I5

FIG. 2. The potential profile for a finite repeated structure R 4P h I-IT) 2 _R2p _h

formed by periodic repetition of a region with arbitrarily vary- L 2e 2  I T 12 2e 2 )
ing potential. where k 0 is the wave vector of the incident electron.

periodic repetition of an arbitrary potential. Every IV. TRANSMISSION THEOREMS FOR A FINITE
"period" in this structure has the same transfer matrix
(say 1 characterizing that period and the grand overall
transfer matrix W11t describing the entire structure is, as We now prove a set of theorems related to transmission

before, obtained by cascading the transfer matrices for through finite repeated structures. First, we prove a

the individual periods. It is easy to see that for a struc- theorem that relates the energies of unit transmission

ture with N periods with each period identical, (i.e., the values of the incident energy for which the

transmission coefficient is exactly unity) through a finite

tot( =W)' () repeated one-dimensional structure, to the band structure
of the associated infinite lattice formed by periodic repeti-
tion of the one-dimensional structure. This theorem was

As shown in Ref. 10, the elements of the matrix wtot stated for the first time in Ref. 5. A more detailed proof

can be expressed in terms of the elements of the matrix is given here with generalization to the case of a structure

W with a variable effective mass.

W10 1 sin(N) Sin[(N - 1)0] ( Theorem . The transmission coefficient of a particle

2sin sin through a periodic structure, formed by N repetitions of a
sinO sinO basic subunit, reaches unity at the following energies: (a)

energies at which the transmission through the basic sub-

where I is a 2 X 2 identity matrix and 0 depends on the ei- unit is unity, and (b) N - I energies in each energy band

genvalues of the matrix W and is given by of the lattice formed by infinite periodic repetition of theIbasic subunit, where these N -I energies are given by

E =E,(k =±n i/NL)(n = 1,2,3, . , N - 1, and L is the

exU)X=k1Tr(W) + Tr(W) 2 12length of a period). Here E,(k) is the energy-wave-I~ ~~ ~~~ 2xi~~) --- - vector relation (or the dispersion relation) for the ith

band of the infinite lattice.

(13)
Part (a) of the theorem is actually fairly obvious. All it

states is that by connecting identical structures of
where 4 1.2 are the eigenvalues of the 2 X 2 matrix W and transmission unity, one always obtains unit transmission

the second equality follows from the fact that the matrix through the composite structure Although this is intui-

W is unimodular. tive, we prove it nevertheless .or the sake of complete-

We can now find the overall transmission probability ness. For this, we first note from Eq. (14) that the

1 T v 12 through a periodic structure with N periods. For transmission I TN 12 through N periods reaches unity When

this, we use Eq. (10) with the elements of _W'0 now given the term within the large square brackets vanishes. The

by Eq. (12). This gives term within the large square brackets vanishes when

12 2 k'2 W12 2 (16)k~W1 -I2  -'k W2 1-W, -2

ITI 2= 2[sin )k2sinW21- W l +W 2ksinO I
We now show that this corresponds to the condition that

(14) IT1 I (i.e., the transmission through one period, or the

basic subunit) is unity. Substituting N = I in Eq. (14), we

which is our main result. get that the condition for unit transmission through one

The two- and four-probe (2-p and 4-p) Landauer resis subunit is given by
Utances for a strictly one-dimensional repeated structure fr.,2 - W1

can now be found easily by substituting Eq. (14) for the I= IT -12 = [n(0) s] 2 i6 -- +t I
transmission probability I Tv 12 in the single-channel Lan-

daner formula: (')
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which, after simplification, reduces exactly to Eq. (16). The locations of the band edges can be found directly
This proves the first part of the theorem, viz., that the en- from the following property, which we prove: The states
ergies of unit transmission through one period are also characterized by wave vectors k for which ITr(__W)l > 2
the energies of unit transmission through all the N are the evanescent states corresponding to the "stop
periods, band" of a finite repeated structure. The states charac-

To prove the second part of the theorem, we note from terized by wave vectors k for which ITr(_..)I <2 are the
Eq. (14) that the transmission 1 T, 12 also reaches unity for propagating states corresponding to the "pass band" of
those values of e that satisfy the conditions the finite repeated structure.

sin(Ne)0, To prove the property, we invoke Eq. (22). If
(18) Tr(.ff)I > 2, then the right-hand side of Eq. (22) is purely

real and greater than unity. In that case, the wave vector
k must be purely imaginary which means that the state is

We 2' r hav (N a (19) an evanescent state corresponding to the "stop band" of
N N _N N the finite repeated structure. On the other hand, if

We now have to prove that the above values of 0 also cor- ITr(.!)j <2, the right-hand side of Eq. (22) becomes
respond to the wave vectors k = ±_n 1r/NL where L is the complex which permits k to be real. In the latter case,
period. For this, we first apply the Bloch theorem to the the state is a propagating state corresponding to the
infinite structure. The Bloch theorem gives t "pass band" of the structure. The values of wave vectork for which ITr[_.i]1=2 evidently correspond to theIb(z + L) = 4(z )exp( ikL), (20) edges between the pass bands and the stop bands.

where k satisfies the relation 1  Theorem II. At the energies of unity transmission
det[ Wij-8ijexp(ikL)J=0. (21) through a finite repeated structure with N periods, the

following equality holds: IT., 2=!TN 2  whenever
In the above equation, Wij is the ijth element of the NI +N 2 =N. Here I TN F and I TN 12 are the transmis-

transfer matrix W describing one period and 8,, is a
Kronecker delta. From Eq. (21) we immediately see that sion probabilities through two subsections with NI and
exp(ikL) is the eigenvalue of the 2 X 2 unimodular matrix N 2 periods respectively.
_W and hence As stated in the proof of theorem 1, the transmission

expik) XI =X 1=.r .(m + j~(M 2 _111/2 1 TN 12 through N periods reaches unity under two condi-
expikL)=.= - f Tr()+ r) -1 tions: (a) when the transmission through each of the N

periods is unity, and (b) when
(22) -1-- (n=1,2,3,... N -1). (25)

The right-hand sides of Eqs. (13) and (22) are identical N
so that their left-hand sides must also be identical. In case (a), the proof of theorem Ii is trivial. If the
Therefore transmission through each period is unity, then, of

exp(ikL)=exp(iO) , (23) course, the transmission through any arbitrary number of
periods is also unity. In that case, obviously,

or

kL =O(mod2r). (24) Ts1 TV212= 1 (26)

regardless of what N, and N 2 might be. This proves the
Consequently whenever k = ±n ir/NL, the quantity theorem for case (a).0---±nir/N. Thus the energies corresponding to The proof for case (b) proceeds as follows. We firstk =±r/NL,±27r/NL,±3ir/NL,..., ±[(N - I)ir]/NL note that

are the energies corresponding to 0Tf (e-irlN,

±21r/N, ±3r/N, .. ,±[(N-l )1rj/N, which, in turn, sinNO=sin(N -N 2 )O=sin( ±nlr-N O )

are the energies corresponding to unity transmission --(-I )" +sinN 2 0, (27)
through the finite repeated structure with N periods as
previously noted. Stated in other words, this means that where we used Eq. (25) to obtain the second equality. Us-
the energies associated with unity transmission through ing the above equality in Eq. (14), we immediately see
an N-period structure are the band energies E(k, ) corre- that
sponding to the wave vectors k = ±nir/NL in an infinite iTIV [2_=1s, (28)

repeated structure. This gives us the E (k, )-versus-k. re- I T I
lation and proves the theorem. which proves case (b).

The usefulness of theorem I lies in the fact that by
evaluating the energies of unit transmission through a Theorem 111. At the energies of unity transmission
finite structure (which we can do from Eq. (14)), we can (I TN = 1) through a finite repeated structure with N
calculate the band structure of an infinite superlattice periods, the following equality holds: I T7v M
formed by the periodic repetition of the finite structure. = I TN _u1for all M such that I M <N.
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The proof of this theorem is very similar to that of sisting of rectangular wells and barriers in which the bar-
theorem II and is therefore not presented. rier and well thicknesses are 50 A. The effective mass

was assumed to be 0.067m o everywhere and the barrier
A. Numerical examples height was taken to be 0.3 eV. Figure 4 shows the

transmission coefficient through one. two, and three bar-
To illustrate theorem I, we show in Fig. 3 the construc- riers in the vicinity of th lowest resonant energy through

tion of the energy-band diagram of an infinitely repeated two barriers. (Resonant transmission through two bar-
structure whose basic subunit is shown in the inset. The riers has been studied extensively in connection with the
points Q,Q' are the two lowest energies at which the double-barrier resonant tunneling diode. ' 12 ) Figure 4 is
transmission through two subunits is unity, whereas the a clear illustration of theorem III. It shows that when

points P,P' and R,R' are the two lowest energies for the transmission through two barriers is unity, the
which the transmission through three subunits is unity. transmission through three barriers is equal to the
These points are on the two lowest-energy bands. Other transmission through one barrier, i.e., TN+-.-M2
points on the energy-band diagram can be found similarly = ITN-M 12 with N = 2 and M = 1. Figure 4 also shows
by steadily increasing the number of periods and search- that whenever IT 312= 1, I T, 12=1 T212, illustrating
ing for the energies of unit transmission. Finally, the theorem II for the case NI = 1, N2  2.
points P1,P 2 and Q1,Q 2 correspond to the band edges Example 2. In Fig. 5 we show the transmission
and are found from the condition I Tr I = 2. through an effective-mass superlattice 13 in which the

To illustrate theorems It and III, we provide the fol- conduction-band edges in the different layers are assumed
xlowing numerical examples. to be aligned but the effective masses are different. We

Example1. We have calculated the transmission IT 2 assume effective masses of 0.039m o and 0.073m 0, respec-
[using Eq. (14)] through a compositional superlattice con- tively, in two alternating layers. (These correspond to the

effective masses of Ino. 72Gao. 2SAso. Po. 14 and InP.14 ) The
transmissions through one, two, and three layers were

i-o- scalculated from Eq. (14) at the resonant energy through

0 - " -  three layers. Clearly, when 1T312=1, IT112=1T 212. This.36U L illustrates theorem II. Also when IT2 12 = 1, IT, 11=T 31'

2_ _ _ _ _ _ _ as stated in theorem III.

P
Theorem IV. If the Fermi energy of a finite repeatedone-dimensional structure lies at the boundary between a

0.3 pass band" and a "stop band," then the four-probe Lan-

1' dauer resistance of N periods of the structure is equal to
N2 times the four-probe Landauer resistance of one
period. This means that the four-probe Landauer resis-
tance increases with the structure's length as L2 instead

>. k - F/2L
(0 0.2

III * II
II I'

L U I k - 4 L k ,, U A/ L 0
I  

3'N

i° I'uu.Q 0.10 -

0.1

1I I

0.05t- - z I1 I

0g0079 0.0109 0.02.014 k WI ~ ~BLOCH WAVE NUMBER (k'). ,IT 2 ...'__

FIG. 3. Energy-band diagram of an infinitely repeated struc- 0.001 -- -
ture whose basic subunit is shown in the inset. The conduction 0.075 0.081 0.007 oo 3 0oM 0.105

i band is constructed by numerically evaluating the energies at ENERGY (V)

which the transmission through increasing number of periods FIG. 4. Transmission coefficients through a periodic struc-
go to unity. The points Q,Q' correspond to the two lowest ener- ture formed by repeating the subunit shown in the inset. The
gies at which transmission through two subunits is unity, subunit consists of a GaAs well and an Al-,Ga,As barrier
whereas the points P.P' and R,R' correspond to the lowest en- both 50 A thick. The barrier height is 0.3 eV and the effective
ergies for which transmission through three subunits is unity. mass is assumed to be 0.067m 0 everywhere. Note that when
The points P,,P2 and Q,,Q2 correspond to the band edges and T1 I2 = I, IT, 12=IT 2Il. Also whenever iTIZl, ITIJzIIT, 2 .

are found from the condition Tr[E]-2. These illustrate theorems il and Ill, respectively.
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.sinN0) (k 2 W 1 -- W12 )
2-4k 2sin2 0

R. ___(N h_____ _12 _n2

L.2eLsine 4k 2
Z .k

sin(NO) R.P(1) . (31)
U.0.8 Zr1 sin0

o.e6/i At the band edges when 0= ±n ir, the above expression
becomes

4.4P( N! un sin(NO) RtP( 1 )N 2R 4p( )
9- i sinO I .4PI = (32)0.2 !am

which proves theorem IV. It also shows that since the
resistance of N periods is N 2 times (instead of N times)

0.0o o0.0 0 .06 0.1s 0.24 0.30 the resistance of one period, the four-probe Landauer
ENERGY(eV) resistance increases with the square of the structure's

FIG. 5. Transmission coefficient through an effective-mass length instead of with its length. This deviation from

superlattice. The inset shows the superlattice composed of al- Ohmic behavior was pointed out in Ref. 15 where it was

ternating layers of InP with effective mass m 1' =0.073mo and demonstrated for a periodic array of "6 potentials." In
Inn 7,Gao 2AAsn 6Po.14 with effective mass m,* =0.039mo. Each the present treatment, we have generalized it to any arbi-
layer is 50 A thick. These figures also illustrate theorems 11 and trary potential profile.

lII. Note that as stated in theorem 11, when IT412=l. The L 2 dependence of the resistance is an interesting
i T =jT 2 2. Also when T2 12= 1, IT 1 j= 1T, 2 illustrating feature. It is well known that in the pass band, where the

I theorem Ill. states are extended. the resistance should be Ohmic and
increase linearly with L, while in the stop band, where
the states are localized, it should increase exponentially

of as L in violation of Ohm's law. with L. The fact, that at the boundaries between the pass
bands and stop bands the resistance increases as the

To prove the theorem, we first show that the energies at square of L, can be used to identify the onset of metal-
the boundaries between the pass bands and stop bands of insulator transitionlb which occurs when the Fermi ener-
a structure correspond to 0 = ±n r, where 0 is defined gy of a system crosses the boundary between a pass band
from Eq. (13). and stop band.

To show this, we first recast Eq. (13) as It is also interesting to note from Eq. (31) that the Lan-3xp 0) + n Tr( W) dauer resistance at the band edges goes to zero when
p 2k 2 W2j - W 12 =0. (33)

+i I- Tr(jK) (29) The above condition is in general not satisfied for any
2 jarbitrary potential. Specific cases when this condition is

Recalling that at the boundaries (band edges) ITr(W)l satisfied are discussed in Ref 17.

=2, we see from the above equation that at the band
edges, sinO=0- so that 8 = ±nnr. V. SUM RULE FOR FOUR-PROBE

We now obtain a general expression for the four-probe LANDAUER RESISTANCES

Landauer resistance of one period. Using Eq. (10) for the In this section, we prove the following "sum rule" for

transmission l-q2 through one period, we obtain the four-probe Landauer resistances associated with the
R =P( I h 1I-1- 2 subunits of a repeated one-dimensional structure.

2e 2  T1 The four-probe Landauer resistances of the various
he I TWil 2)+k'z 1 subunits of a eetdone-dimensional structure obey the

_h_.h[(Wl,+ W22 1)
2 +(k 2 W, 1 -W, 2 )2  ] -following equality when evaluated at the energies of unit

2e 2  4k 2  transmission through the structure corresponding to case
h 4k ,!s8+( Wj-W2) (b) of the~orem 1:

h 4k 2cos 2O+(k 2 W I2 )
4k-1nN-I R L"(I)--22 402 , L=- -- -- (34)

2e I IV -, I '

h (k 2 W 2 1 - W 12 - 4 k sinO
2e 2  4k0 J (30) in - I

where R (rm) is the four-probe Landauer resistance of a

where we used Eq. (29) to substitute for ( WII + W 22 ) in subunit with m periods evaluated at the nth resonant en-
terms of coi0. ergy (energy of unit transmission). The summation is car-

From Eq. (I5) we also find that the Landauer resistance ried out over all the N - I resonant energies correspond-
of N periods is ing to case (b) of theorem 1.I
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To prove the sum rule, we make use of Eq. (31). This TABLE I. The sum of the three A's is unity, which satisfies
equation is valid for all N. Replacing N by a running in- Eq. (34) and, hence, the "sum rule." Note that the energies in
dex m and then summing over m, we obtain the first column correspond to points R', Q', and P' in Fig. 3.

NN RL(M).4 =(I-IT 1 2)/(3-1T, !-'-T.-- 1-T,1-2).
, iN 2( 6 ,__ ___ ___ __ ___ ___ __

sin2 RL0)=  sin0 . (35) Energy (eV)RL(I) for which IT4 12=l I T, 2  
1',2 'T1

2

Note that in the above equation we dropped the super- 0.2798 0.1751 0.09595 0.1751 0.2499
script -4-p" from R4'p for the sake of brevity. We will 0.3009 0.02357 1.0 0.023 57 0.5
follow this convention in all following equations with the 0.3304 0.3477 0.2105 0.3477 0.2499
tacit understanding that the resistance being referred to is
the four-probe rather than the two-probe resistance.

Making use of the trigonometric identity s which is the sum rule.

N I sin(NO)cos (N + )O] In Table I we provide a numerical example of the sum
sin2( m 6) (36) rule for the case N =4 and for the potential profile shown

2 2 sin0 in the inset of Fig. 3. The right-hand side of Eq. (34) does

and recalling from Eq. (18) that at the energies of unity become equal to unity within the numerical accuracy
transmission through N periods (i.e., at the resonant ener- available.
gies), sin(N0)=0, we get from the above idenity that atany esonnt eergyVI. BOUNDARY RESISTANCE OF A FINITE
any resonant energy REPEATED ONE-DIMENSIONAL STRUCTUREm =N N

sin-(m 0, 2 (37) While studying pseudolocalization, Azbel and Rubin-
'1 I' stein 19 introduced the concept of the "boundary resis-

where 6, is a resonant value of 0, i.e., 6, =nir/N where tance" of a finite repeated one-dimensional structure.
n = 1, 2,3, ... , N - 1. The "boundary resistance" of a structure with M periods

Using the above result to substitute for the left-hand is the limiting value of the "average resistance" of the
side in Eq. (35) we obtain structure defined as

3mTPm (40)
, R n)(m) M 1

N .=i sin2 , where R LP(m) is the four-probe Landauer resistance of a2 R 1 ( 1 ) section composed of m subunits.
,M ,V I R (M) Reference 19 showed that in the case of uniformly

I RL"  spaced 8 scatterers, the average resistance evaluated at
= =1 .sin2(0, ) the resonant energies of the structure converges to a

R' " '(1) nonzero constant value independent of the number of
=, =- Iperiods M (or the length of the structure), provided M is

R "(m) sufficiently large. This constant value was termed the
= ,= sin 2 I , (38) "boundary resistance" since it arises from the effects of

R "'(I) I N J the boundaries that break the translational invariance ofthe structure. In this section we derive, for the first time,
where, in deriving the second equality above, we used the an analytical expression for the boundary resistance. We

fact that at the energy of unity transmission through N then prove two properties-one associated with the
periods, the Landauer resistance of N periods is zero, i.e., boundary resistance, and the other associated with the
RL"'(N) = 0. average resistance evaluated at the energies correspond-

From Eq. (38), we obtain (by summing over the index ing to the edges between the pass bands and stop bands of
n ) an infinitely periodic structure.
N .=, -  

R""'(1) .=.-, [ I I
=N .. sin 2  N Property 1. The boundary resistance of a periodic

2 = i i , mR(m ) n N structure is indeed independent of the number of periods

,, = M (or the length of the structure) and depends only on

2 the potential profile within any one period.
= 'v sin 2  

n -rsinlfr)
I N s ' The above result was demonstrated from numerical simu-I .-N lations (but not proved analytically) in Ref. 19 for the

- " sin 2(n e,), (39) specific case of a periodic array of "8-potentials." In this
n-1 paper, we provide an analytical proof of this property

which is valid for any arbitrary shape of the periodic po-where 6,, is the value of e, at the first resonance, i.e., tential.
0, 1 =ir/N. tnil

Comparing Eqs. (37) and (39), we finally obtain Eq. (34) Property 2. The average resistance of a periodic struc-
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ture, evaluated at the edges between the "pass bands" ,+ ______!

and "stop bands" increases with the square of the length - kM-%< M--'L (44)

of the structure if the number of periods is large.
We first derive an analytical expression for the bound.

ary resistance. oM+'-Of =nr < r (45)
At the resonant energies [for case (b) of theorem I] we

have from Eq. (38), Hence the differences go to zero as I IM which proves

property 1.
W(2)L() We now proceed to prove property 2. When the Lan-

-sinz0,)= ,n = (41) dauer resistances are evaluated at the edges between a
I, R L (M) pass band and a stop band,i m1

M=1 ~R m(band edges) - mym R L(M)

Therefore using Eq. (41) in Eq. (40) we obtain R d=1
Al 1 ,n-I

Ra(resonance)= 1 RL(l). (42) M, 2=1m2RLV2 sin'( ) (42) 
(M + 1 )( 2M + 1). RL(l)

Finally, using Eq. (30) to replace RL(I) in the above m2
equation, we obtain 3- -RL(l) if M >> , (46)

_h k2W21 -W 12 j2 _1 where we used theorem IV to arrive at the second equali-
R M(resonance) - ty. - ty.4e2  2k sin(0) Hence the average resistance, evaluated at the band

(43) edges, increases as the square of the length of the struc-
ture when the number of periods in the structure is large.

where the quantity in the right-hand side is evaluated at This proves property 2.

any one of the resonant energies for a structure with M VII CONCLUSIONperiods. l.ONLS N

We now have to prove that the right-hand side is in- In this paper we have proved several theorems related
dependent of M if M is sufficiently large, i.e., if M >> 1. to the Landauer resistances of finite repeated structures.
This will prove property I. Of particular importance is the theorem that relates the

Referring back to Eq. (14), we see that resonance con- energies of unity transmission through a finite, repeated
ditions ( TM = 1) are reached when either the term within one-dimensional structure to the energy-wave-vector

I the square brackets in the equation above reaches zero20  dispersion relation for the associated infinite lattice
or when sin(NO)-0. formed by periodic repetition of the structure. This

Case 1. For the former case, i.e., when the term within theorem is valid even for a structure with spatially vary-
the square brackets is zero in Eq. (14), R M(resonance) is ing effective mass and is therefore very useful in calculat-
identically zero as seen from Eq. (43) and hence obviously ing the energy-wave-vector dispersion relation for any
independent of M. Thus, we have proved property I for infinitely repeated structure.
this special case.

Case 2. When sin(NO)-O but the term within the ACKNOWLEDGMENTS
large curly braces is nonzero, the value of R m(resonance)
is not zero. The dependence of this nonzero value on the One of us (S.B.) was supported by the U.S. Air Force
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km (=nr/ML) and , (=nr/M), where the last two
quantities are the resonant values of the wave vector and
the corresponding resonant values of 0 for a structure APPENDIX
with M periods. To prove property 1, we have to merely In a region where both E, and y are constant (spatially
show that (i) the matrix elements W2, and W12 are con- invariant), the Schr6dinger equation becomes (see Eq. (3)]
tinuous functions of energy, and (2) the difference be-
tween kAm and 0 w. 1, and also Om" and Of4" and henced lA 1  mE
R (resonance) and R 14 "(resonance), decreases continu- dz +"I " E (z)O. (Al)
ously with increasing value of M. The former fact, name-
ly that the matrix elements are continuous functions of To define the transfer matrix through a section of
energy, is obvious from the derivation of these elements length L where both E, and ' are constant, we look at
given in the Appendix. The latter fact follows from the solutions u (z) of Eq. (Al) which satisfy the boundary
inequality conditionsI



5108 M. CAHAY AND S. BANDYOPADHYAY 42

uj(0)=0, u'1(0)=1 , (A2) The explicit forms for U, 2 (W are the following.

and Case a. If E > E r/y + E,

u,(O)= I, u(0)=--0 (A3) ul(z)= sin7)

where the prime denotes first derivative with respect to u 2(z)-cos1z , (A8)
space. The solutions u1.2 (z) are linearly independent
solutions (their Wronskian is unity) and a general solu- where
tion of Eq. (A ) can be written as 2= 2m * E E , A

0b(z)--A uj(z)+ A2u2(Z) .(A4) 4 2  -- -Ec•(9

The transfer matrix W is defined as follows: Case b. If E < E, /y + E ,

-((0+) u(z)= (A1)

u(L) 0(0+) U2(z)=cosh(Kz) (A 1)
Using Equations (A2)-(A), we obtain

f where

W u('(L) - (L)

yu1 (L) u2 (L) (A6)'
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